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PREFACE

Tn this book students arc guided slowly through the proofs of
the important general theorems in the elementary theory of alged M
braic cquations. A background of plane trigonometry, plane
analytic geomotry, and the differcntial ealeulus is presupposgd.™

Development from the partieular to the general is an gutstand-
ing feature of this book. For example, determinaits of order
three, determinants of order four, and determinantsfef order five
are defined in such a way that these definitioqaSliustrate all the
details in the intricate general definition of glq’tprrninants of order
n which follows. I[Each property of defor {ants is proved com-
pletely if = is four or five, precisely asthi)general theorem is later
proved. The same plan is used in the.proofs of the theorems on
systems of linear equations in n v:g,fiitb]es.

Attention is called also to thellctailed exposition in this book.
One type of amplificalion is geparation of a complicated proof into
gimnpler parts, s in the eoof of Sturm’s theorem and the illus-
trative material which precedes this proof. Again, clarifying
rogtatement oceuts ‘fﬁ%{{ucntly, as in the proof of the theorem
charactorizing thé boots of the quartic equation by properties of
its discriminahtt/ Equations and theorems are also ciled, as in
the proof of e algebraic solution of the reduced cubic equation,

Numérhus “problems arc inserled at appropriate intervals. In
gcnerai’,&\Rthe odd-numbered problems constitute a complete set.
Thqfé'ven-numbered problerns may he used as an alternate sct.
Some problems illustrate proofs in the text.

N\ "The discussion of complex numbers in chapter 8 is independent
of the preceding chapters. ITowever, in my expericnee, & Sys-
temstic study of Lhe complete and precise statements and proofs
of the general theorems in this book may well precede a study of
the abstractions of modern algebra,

/"

L. W. GgIFFITHE
Evanston, Tlirois
July 22, 1946
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CHAPTER 1
BINOMIAL EQUATIONS

1. Functions and equations. The idea of funetion has proved fio™
be of inportance in mathemcxﬁ( s and its applications, If z may
assume several values, then 22 — 22 — 15 15 a funetion of 2 becauee
cach value of 2z determines a value of 22 — 2z — 15, \It"z may
assurne several values, then 2 4 called & variable. The ‘statement
that f(2) is a single-valued function of z means thais\ea(h value of
2 determines one value of f(z). The symbol féghdenotes the value
of f(z) when z has the value c. Thus, if f{z) is the particular func-
tion 22 — 2 — 15, then j(4) it 42 — 2-4'2T5, that is, —7. A
function may depend on more than Qrié variable. For example,
if z; muy assume several values and mdepen dently z may assume
several values, then 22 — 22 s a functlon of z; and 25 beeause each
pair of values of z; and 2 dgtermmes a value of 22y — z3. The
statement that f(z;, - -, 2, )" s ¢ stngle-valued funciion of the n in-
dependent variables 21, ¢ 2, mecans that each set of values of
2, *--, 2n Uetermine§ ohe value of f(zT, <+, 24} The symbol
flew, - ) dcnote\a&\tho value of f{z), -+, 2,) When zg, -+, 2,
have the valueg r'J, s, 6y Tespectively. Thus, if f(z1, z2) 18 the
particula-r fuhdbibn 2z, — 2o, then f(2, —1) is 2.2 — (—1), that
is, . 7.

Equ 12)\11% are notations for questions about func tmm For ex-
ampk\’\h there a \alue of 2 for which the vulye of 22 — 22 — 15
13. 9‘? The equation z* — 2z — 15 = 9 states this question. Is
‘thprc a value of 2 fm which the value of 22 — 3z — 17 is the same

\ab the value of 22 — 22 — 157 The equatmn 2% — 32 — 17 =

— 92 — 15 states this question. If % is a number, is there a
Valuc ¢ of z such that fic) is £? The equation f(2) = k states this
question.  If g(z) is a function of z, is there a value d of z such that
fd) is gieh? The equation f(2) = g(z) states this question. Is
there & value of 2 for which the value of 22 — 2z — 15is —16 and
at the same time the value of 2% + z — 1 38 —27 'The simultane-
ous equations 2 — 2z — 15 = —16 and 2° + 2 — 4 = —2 state

1



2 BINOMIAL EQUATIONS

this question. Arc there values of z; and 2; such that 2z, — zy
has the value 3 and —z; + 2» has the value —2? The simul-
taneous cquations 2z — 2y = 3 and —2zy + 2 = —2 stale this
question, If more than one equation is under consideration, the
cquations are said to form a system. The equations which are
discussed in the elementary theory of eguations are formed by
inscrting the symbol = between a function and a number or be-
tween two functions.

The staternent that a number ¢ is a roct of an cquation f{z) =
mcans that the number f{¢} is the number 4. Thus, 6 is g fqot
of 2?2 — 22 — 15 = O because 6 — 2-6 — 15 is 9. The nofatlon

— 2-6 — 15 = 9 expresses this relation botween these nhim-
bers Again, the notation f(e) = & expresses the ata,ﬁement that
the number f(c} is the number £ If the svmbol\A is inserted
between numbers, the result may be called &i\gquation, but it
must be carefully distinguished from the egyations which invelve
functions. The statement that d is a Ioékﬁlof flzy = g{z) means
that f{d) = g{d). A root of a system ofi ogtiations is a root of each
equation in the system. Two qv&.tem‘s are equivalent il they have
the same roots. A root of an equdtion is said to satisfy the equa-
tion. Finding the roots of an e»quatlon is called solving the cqua-
tion.

The statement that a 5 of numbers ¢y, -+ -, ¢, s @ solulion of
Flz1, +++, za2) = k mex, s that fley, -, en) = k. A solution of a
8¥ -;tem of equations }bmore than one varlable iz a solution of each
cquation in the system. For example, the set of numbers 1, —1
is a solution Hi“the system 22 — 23 = 3 and —z; + 29 = —2.
Two sy&tt‘;né)are equivalent if they have the same solutions.

Latel‘;&wthen there can be no misunderstanding, it will be said
that 29g'a root of f(z) = 0 and that z;, ---, 2, is a solution of
f(zl’sos zn) = 0.

\2 Miustrations of use of factorization of a function. If the opera-
tlons indicated in (2 — B5)(z + 3) are performed, the function
— 22 — 15 is obtained. This is the meanmg of the statement
that {z — 5)}(z + 3) is identically equal to z2 — 2z — 15. The
notation (z — 5)(z + 3) = 2° — 22 — 15 states this fact. It is
especially to be noted that these same operations can be performed
if 2 is replaced by any value ¢ of z. This implies that, if 2 is re-
placed in the identity (¢ —5)(z+ 3) =2> — 2% — 15 by any
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value ¢ of 2, then an equality (¢ — 5){c + 8} = ¢ — 2z — 15 be-
tween numbers is obtained.

In gencral, f(zy, « -+, 2,) = g(z1, - * -, 2,) Means that the result
which is obtained by performing the operations indicated in
flzy, -+, 2y} i the same as that obtained by performing the oper-
ations indicated in gfz, « -+, 2.).

The factored [orm (z — 5)(z 4+ 3) may be used instead of
the expression 22 — 22 — 15 in the determination of functional
values. "Thus, when z has the value 1, the function has the valed, >
(1 — 5)(L 4 3), that is, —16. When z has the value —1 ‘t{m
funetion has the value {(—1 — 5){—1 + 3}, that is, —12, W }mn
2 has the value 5, the function has the value (5 — 5)(5.F% 3, that
is, 0-8, that is, 0. When 2 has the value —3, the fun{"hon has the
value ( 3 — 8(—3 + 3), that is, (—8)-0, that 13\0

The use of the factored form of the functiomir e¢mputing func-
tional values indicates that the functional yalye is 0 if the value
of one of the factors 2 — 5 or z + 3 is 0, and/that, if each of these
values iz different from 0, then the fu‘rié tional Valuv is different
from 0. Thus 5 and —3 are the on]V woote of 22 — 22 — 15 = 0,
This illustrates the general faet tha.’r if f(z} ean be factored, then
all the roots of f{z) = 0 arc foumi from the factored form of this
equation. .

The following solutlon of the equation

3

(L) \\ 27 =1
is a more comphca:ted illustration of this genem] fact. Clearly the

mota of (1) /e’ the roots of the equation A —1 =0 Also,
—1= Qf& 1)z + z + 1). Thercfore the roots of (1) arc the

1'oots uf\\ 9

(2} 28 z—1=0,
N\
\émd the roots of
(3) 2+z+1=

dince the factorization of the function on the left-hand side of (3)
is not obvious, the roots of (3) are found by the quadratic formula.
They are the numbers (—1/2) 4 (4/3/2)¢ and —1/2)

(\/_ /2)i. Hence there are fhree roots of the equation 2% = 1,
namely, these two complex numbera and the number 1. That
vach of these numbers is & root of z2° = 1 can be checked by direct



4 BINOMIAL EQUATIONS

substitution. That the factored form of the quadratic lunetion
on the left-hand side of (3) is {2z — [(—1/2) + {v/3/2)i)}
2 = [(—1/2) — (+/3/2)i]} can also be checked. Hence these
three roots are the only roots of 25 = 1,

The cquation 2* = 1 can also be solved by [actorization. Thus
2 —1=E -DE+D)=(— D+ )62+ 1. By the
quadratic formula the roots of 2% + 1 = 0 are ¢ and —7. There-

fore the roots of 2* = lare 1, —1, 4, —i. A\
The equation R
A\
(4) 2 =1 A

is more difficult. In facl, only one root of this equgmtfgﬁwcan l.n?
found by obvious factorization. Thus, 2f — 1 = (& Bt + 2
+# 4+ 2+ 1). Hence the roots of (4) are the x00ts of

(5) z—1=0,

o
and the roots of

N,
(6 4 s Pov= 0.
There 15 no ohvious factorization® {éf the left-hand side of (6).
Later it will be explained how ;ﬁéﬁ}'t-h-dtzgt'ee equations are solved,
A new method of solving (il be explained in scetion 5. In

scetion 8 it will be provedMhat this method is applicable to (1)
and to NS

£\ /
\

N RN\

\ 3
ifnisa positive\’ "ii;lfeg&l‘. In section 9 it will be proved that this
method is axls{z}}:zpblicable to
(8) \:\ =,
if n J8%a positive integer and ¢ is # non-zero eomplex number.
Eqs@tfons of the forms (7} and (8) are called binomial equations
\'b‘n;(:siuse they contain exactly two termsg.

PROBLEMS

1. Bhowthat2® + 2 — 6 = (z — 9(z 3). Using the form 22 + 2z — 6 of
this funetion, corpute its values whon z has the values 4, 3,2, —1, —8. Check
by using the factored form of this funetion. What are the roots of 22 +z—46
=07

2. Show that 22 — 2 — 6 = (z - 2)(z — 3). Proceed as in problem 1 if #
has the values 4, 3, 2, -1, -2,
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3. Verify that 22 + 1 = (z + 1)iz* — 2 + 1. Solve z* = —1 by lactoriza-
tion and the quadratic formula.

4, RBolve 2% = 1 by factorization, using the results of problem 3 and the
roots of {13 which were found previously.

3. Complex numbers in trigonometric form. Complex numbers in
trigonometric form are used in the new method of solving bi-
nomizl cquations whick was mentioned at the end of section 2.
In general, multiplication and division of complex numbers are
simplified by using these numbers in trigonometric form. Q)

The process of cxpregssing complex numbers in trigonometsic
form is elarified by establishing a rectangular coorc]ina’pe\'sﬁ-‘s\teln
in a plane and associating cach complex mumber withy adpoint in
the plane. Two perpendicular lines in the plane afe Selected us
X-axis and Y-axis, and the same unit of lllea.sq}gié used.

Severul partieular complex numbers will helexpressed in trigo-
nometric form before the process is applied Q @n arbitrary complex
number, The comples number (—1/2) A73/3/2)7, which was a
root of (1), determines the point whose '}-t_toordina.te is —1/2 and
whose Y-coordinate is 4/3/2. Thls:Is the point £ in Figure 1.
It is known that £ lies on the términal line of the angle 1207 in
standard position and that t-hﬁ:kﬁgth of the line from the origin
to P is 1. By trigonometfydsin 120° = 4/3/2, and cos 120° =
—1/2. Therefore (—1/2N (W/3/2)¢ = 1(cos 120° 4 ¢ ¢in 120°).
The right-hand side’Qf:fﬂ'lis equation ig called a frigonometric form
of the complex ﬂ-w’h@i?"’ (—1/2) + (\/{‘_3/’2)?:. However, £ i3 also
on the terminal lihe of the angle —240°, and sin (—210%) = /3/2
and cos (—240%) = — /2.  Therefore (—1/2) + (\/3/2)i =1
feos ( —2-—'10"{)“-'{- # gin (—240°)]. The right-hand side of this cqua-
tion is &l§0 called a trigonometric form of (—1/2) + ( V3721,
In gp]:bsxm, it r = 1 and 8§ denotes any angle which is coterminal
\xii\ﬁh" 120°, then (—1/2) + (v/3/2) = r{cos 0 + fsin ). Each

#of these cxpressions involving » and 8 is called a trigonometric
form of (—1/2) + (v/3/2)i. Each of these angles is called an
amplitude of this complex number, and r is called #he modulus of
thig complex number,

The complex pumber 1 — 7 will now be expressed in trigono-
metric form. Since 1 — 1 = 1 4+ (—1)7, the number 1 — ¢ de-
termines the point whose X-coordinate is 1 and whose Y-coordi-
nate is —1. This is the point @ in Figure 2, 1t is known that ¢
lics an the torminal line of the angle 315° in standard position and
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that the length of the line from the origin to @ is /2. Also
sin 315° = —1/4/2 and c0s315° = 1/4/2. Therefore 1 — 4 =
"v/2{cos 315° + 7 5in 315°). In the same way it is proved that
! — ¢ = +/2cos (—45°) + isin (—45°)] and that 1 —{ = 2
[cos (315° + 860°) 4 ¢sin (315° + 360°)].  In general, if r =
'4/2 and 9 designates any angle which is coterminal with 315°,
then 1 — ¢ = r{cos 8 -} {sin #). Fach of thesn angles is an amphi-
tude of 1 — 7, and r is the modulus of 1 — 4.

Y 4 N

Fiauzre 1. : ',"{l Fraues 2,

The complex number 1 will\iow be expressed in frigonometric
form. Bince 1 =1 4- 0.4, the complex number | determines the
point whose X-coordinateMs 1 and whose ¥V -coordinate is Q. I
r =1 and ¢ is any a@glﬁ which is coterminal with 0°, then 1 =
r{cos 8 + ¢ sin )., i‘\ach of these angles is an amplitude of the
complex numben %4 0-7, and the modulus of this complex num-
ber is the ppai‘ti‘ve number r.

In cach@Nhese illustrations the rectangular coordinates of the
point whieh is determined by the complex number are such that
the yalue of 7 and a value of 6 are known by experience. 1t will
new" be explained how the value of r and a value of ¢ is determined

“Bythe literal non-zero complex number ¢ + di. Here ¢ and d are
feal numbers. The point S, whose X-coordinate is ¢ and whose
Y-coordinate is d, is determined by the complex nymber £ + di.
If v designates the length of the line from the origin to 8, and if
6 designates any angle in standard position such that 8 lies on the
terminal line of 8, then, by trigonometry,

4
(9 sinf = -, and cos® = ‘.
s r
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Therefore
(10} e=rcosf, and d=rgind

TFrom these expressions r is eomputed first. Thus, ¢ + d2 =
{r cos §)% + (rsin )2 = % (cos® § + sin®6) = . Now r is posi-
tive because it iz a length. Alse it is a property of the real number
gyvetem that there is one and only one positive number whose
square is the positive number ¢® + d°.  This positive number,
whose square is ¢ + d2, is designated by the symbol Ve® -0,
Ilence O\

11) r= Ve + d O

If ¢ # 0, a value of # can be computed from the f«f}c-t-"that tan 6
= d/¢ and the fact that the quadrant in whic.l:fxé terminates is
known. If ¢ = 0 and if d is positive, then a\galde of 8 is 90°. If
¢ = 0 and if 4 is negative, then a value of 848270°. Then r and ¢
are known, and each of the expressions 7((1"0'; B -+ 7 sin 6) is @ frigo-
nometric form of the complpr number Bf/di. The value of r which
is found from (11) is the modulus ofe 4 di, and cach value of 8
which is determined {rom (Q) 1S an amplitude of ¢ - di.

4. Multiplication and dwmmn of complex numbers in trigono-
metric form. The follgwing lemma states the simple rule for
multiplication of coz;;p&x numbers in trigonometric form,

Lenma 1. The \?}duct of two complex numbers in trigonomelric
form ts @ comy 1o nwmber in trigonometric form. The modulus of
the product,ig $he product of the moduli of the factors. An amplitude
of the ppaduict is the sum of an emplitude of the first factor and an
ampl:&@&e'af the second factor.

.\’PﬁfOQF. If r{cos & + % sin #) and s(cos ¢ + 7 sin ¢) are two com-

“\pléx numbers in trigonometric form, then their product is

Qi

Vrs[(cos 8 cos ¢ — sin 8 sin ¢) -+ i(sin 6 cos ¢ - cos @ sin ¢}].  From

trigonometry it is known that
(12) cos.(f + &) = cosd cos ¢ — sin #sin ¢,
(13) sin (f + ¢) = sin # cos ¢ + cos 6 sin .

Hence the product of the two given complex numbers is

rs[eos (8 + ¢) - isin (0 + ¢))

t!'i
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The product #(z + D{{—1/2) + (+/3/2)¢] will be computed
to illustrate the use of lemma 1. By (9) and (11) it is found that
144 = 4/2(cos 45° + i sin 45°). Therefore, by the lemma, a
trigonometric form of (1 + H[{—1/2) + (W/3/2)7] ia (+/2-1)
[cos_(45° 4+-120°) -+ © sin (45° + 120°)]. By (9) and (11) it is

- found that © 4 1-Z = 1(cos 90° -+ £ sin 90°). Henee, by the
lemma applied to these last two complex numbers in trigono-
metric form, the modulus of #{1 4+ H[(—1/2) + (V3/2)] is
1{4/2-1), and an amplitude iz 90° + (45° + 120°%).  oence &N
trigonometric form of the product (1 + 4){(—1/2) + (\/?/Z\}&l 15

(14) V/2(cos 255° - 4 sin 255°). O

The non-frigonometric form of the produet i(1 —l—@[’(’ﬁv 1/2) 3
(v3/2)] is obtained by multiplication in the @isaal manner.
Thus i1 +9 =i —1. Also (& — D[(—LEIH (v/3/2)] ==
(1 —/3)/2] +[(—1 — v 3)/2L. Thel‘uf{n{a,the usual form of
the product (L + D[(—1/2) 4+ (/3/2)1] .\i*s’i,\ ’

(15) (l - \/g) + (ll—iﬁ) i.

2 AN\
It will now bhe cheeked tl}%it; “the number (14} equals the
number (15). Thus cos 255%™ cos (180° + 75°%) = — cou TH° =

— cos (30° + 45°) = Llwos 30° cos 45° — sin 30° sin 45°) =
— (VE/2(V2/2) T OAR)(VE/2) = (—/F + D/9/4. Simi-
larly, sin 2557 = & (IMF 4/3)4/2/4. If these results arc used in
(14), the numbep,{15) is cbtained.

It is to be wdled that, if the number of factors in a product is
greater ‘rhggzﬁfree, then multiplication using trigonometric forms
of the c,c{@plex numbess is preferable.

~O PROBLEMS

) 4
\ 1. Express each of the following eomplex numbers in trigonometrie form:
—1 44, (—-1/2) — (+/3/2%, —i. Plot the point determined by each of these
nuinbers.

2. Treat the numbers —1 — 7, (1/2} — {~/3/2}, 4 us in problem 1.

3. Find {(—1 + 9{(~—1/2} — (+v3/2))( — ) by the repeated use of lnma
1. Then perforin this multiplication in non-trigonometrie form. Show that
the two results are equal,

4. Proceed s in problem 3 with (—1 — £)[(1,2) — (43,231

6. By repeated usc of lemma 1 Gnd [(—1/2) — (43 /2%].
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6. By repeated use of lemma 1 find [(1/2) — {+/3/21]%

7. Prove that if r(cos @ 4+ ¢ =in 8) is a trigonometrie form of the complex
number ¢ -~ i, and if ¢ + 4 i5 not zero, then a trigonometrie form of the com-
plex number 1/{¢ + i) is

{16} . %[cos {(—8y 4 7 sin {—8)).

8. Prove that ifa +bi = r(cos@ -+ igind), ¢ + di = s{cos ¢ + Zsin ¢}, and
¢ + o4 iz not zero, then (@ + ) /(e 4 di) = {r/s)fcos (8 — ¢) + isin(s — qﬁ},]\
This is the rule for division of complex numbers in trigonmnetriec form.

5. The cube roots of unity in trigonometric form. The newinm.\thod
of solving equation (1}, which was mentioned in seactjo’u\Q, will
now be explamed.  The desired root z is given the melation
17) ¢ =r(cosf+ising). U

By (9) and (11}, a trigonometriec form of the C()II;LPIEX number 1,

which appears on the right-hand side of ’sl‘\%'gn e equalion (1),
18 1{eos 0° + 75 0°). Hence (1} becon’tes

(18) [r(cos 8 + € sin 6] c’os 0° + ¢ &in 0°).
Now by the lemma it is true t%lat
(19) [r(cos 8 4  sin = +2(cos 20 -+ 7 sin 26).

Hence, by the lemma applied to the right-hand side of (19) and
r{eos f 4 £ in 6) a.r\f.q‘ebérs, it is true that

(20) r{cos @ —]— 4sin 6} - [r{cos 6 + ¢ sin #1* = r3(cos 30 4 ¢ sin 36).
ITence (18) beaome-,
(21) \"\‘ 3(005 30 4 4 sin 3) = 1(cos0° -+ ¢ sin 0°).

Arc’ﬁlere values of r and 8, that of » being positive, for which
Lho complex number on the left-hand side of (21) is the complex
\ﬁumber on the right-hand side? This is the question stated by
(21). Therefore, by the definition of equality of complex numbers,
there are two questions. First, is there a positive number r such
that

(22) ' =1,

and, next, is there a value of 8 such that 30 is coterminal with 0°?
By the properties of the real number system there is one and only
one positive number which satisfies (22)., Therefore r = 1. Also
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3 is coterminal with 0° il and only if % is an integer such that
(23) 30 = 0° 4 k-360°.

Now, when % = 0, then § = 0°; when % = 1, then ¢ = 120°;
when k = 2, then ¢ = 240°. Hence three values of z are, by (17),

2o = 1(cos 0° 4 7 sin 0°),
(24) z; = I{cos 120° 4 ¢ sin 120°),
22 = 1{cos 240° + { sin 240°). A

RO
Nows
These numbers zq, 2;, 22 are in lrigonometrie form. rl:heir’ ordi-

nary forms arc AN

' -1 V3 —1, 3/5 _

(25) =1, z = 2-+ 5 t, Zg = 2'“}& 5 i,
Tt i3 to be noted that these three ruot-sxo’\f\,( 1) which have hecn
found using trigonometric forms are thetAralues found from (2)
and (3}. P\%

It will now be proved that, if zaadesignates the value of 2z which
is obtained if & =3 in (23), then z; = z5. If & = 3, then 6 =
(0° + 3-360%/3 = 360° and @3%= [{cos 360° + 7 sin 360°). How-
ever, 360° is coterminal with®0°. Thercfore z3 = zg. In the same

i

Q!

v AN way 1t is proved that, if 24 designates

o \’ the value of z which is obtained if
. \ b\ k=4, then 24 =z,. In general, if
AN two values of & differ by an integer

NS which is divisible by 3, then the two

9.\ «Lx values of § which arc determined

from (23) differ by an integer which

is divisible by 360°. Therefore the

NN 2. roots of (1) which are deteimined

\"x} "/ by two such values of k have coter-

Frese 3. minal amplitudes and are equal, Thus

it has been proved that there are

three and only three distinet numbers which satisfy the equation

2* = 1. These numbers ave the numbers (24), that is, the num-
bers (25}. Those numbers are He cube rools of unity.

Tho symbol e is also used to designate the complex number

(—1/2) + (\/3/2)7, which was designated by 2; in (24). There-

fore o = 1{cos 120° + 4 sin 120°). Also  o® = 1(cos 240° +
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#gin 240°) by lemma 1. In this notation the three cube rools of
unity arve I, o, o

tach of the complex numbers 1, w, «® determines a point as in
scetion 3. The notation Py, P, P2 may be used for these points,
In Figure 3 they are designated by the symbols 1, , o®. These
points lic on the circle whose center is the origin and whose radius
is unity. They are the vertices of an equilateral triangle.

6. De Moivre’s theorem. "This thcorem will be used Tﬁter ™\
solving (4), (7), and (8) by the method mentioned at the end of
seetion 2. De Moivre's theorem will be proved by m'lthema’t*r( al
induction. The first step in such a proof is verification, fhilt the
theorem is truc for at least one value of n, Usually &retification
is carried out for several small values of n. Lhe o\second step is
proof of the lemma for the induction, O
Dy Morvee's THHOREM. Ifn s a po&itia{e{mjege?‘, then
{26) {cos ¢ + 7sin 6)" = cos nﬂ“—lx'i"sin 6.

Proor. De Moivre’s theorem 15 t‘I‘ll(_, for the vahie 2 of =

beeause by lemma 1 R

(27) {cos § + ¢ «in &)2 = cor 26 - 7 sin 24.

1f both sides of (27) are n ultxphed by cos § -4 2 sin 8, and if lemma
1 is applied to the 1'igl€t¢hand side of the result, it iz found that

(28) (cogd -+ 7 sin 6)° = cog 3§ -+ < sin 34,
Thereforc De ;M’.\.(;i'\:re’s theorem iz true for the value 3 of .
L 'm;lm: INDUCTION. If g 15 a value of = for which (26)
8 truey hen ng + 1 is a value of n for which (26) s true.
By t'hc statement of the lemma it is known that
\(29) (cos 0 - ¢ sin 8)™ = cos nef 1 ¢ sin nof.
1t is to be proved that
(30) {cos 8 4 7 sin ™1 = cos (ng + 1)§ + ¢sin (no + 1)6.
If both sides of (20) arc multiplied by cos 8 + 7 sin §, the result is
(31) (cosé -+ ising)-(cos d + ¢ sin )"

= (cos # + 7 sin 8) - (cos nof -+ 7 sin nef).
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Now the left-hand side of (31) is the left-hand side of (30). Also,
by lemma 1 the right-hand side of (31) is the right-hand side of
(30), This completes the proof of the lemma for the induction.

Since (26) has been verified for the value 3 of n, it iz known by
the lemma that (26} is true for the value 3 + 1, that is, the value
4 of n. Again, since (26) is true for the value 4 of #, it is known
by the lemma that (26) is true for the value 4 + 1, that ig, the
value 5 of n, Therefore, by a continuation of this process, (26).4s
frue for cach positive integral value of n.

L\

1. The fifth roots of unity. De Moivre’s theorem will noﬁ\l o Used
to golve (4). If z is given the notation (17), then (4) becomoes

[r{cos @ + 7 ¢in #)]® = 1(cos0° + ¢sin 0°). Henee, by Dé Moivre's
theorem, (4) beecomes '.\\

(32) r(cos 58 + < sin 58) = 1(cos 0° Fysin 0°).
(N

Then, as in the discussion following (21}) 7 is determined by the

fact that r is positive and the equatmn # = 1, and 6 is determincd
from '

’.
PN

(33) 58 = 0° 4 k 360 k an integer.

Thercfore r = 1. Also the values 0, 1,2 3, 4 of k& yield respec-
tively the roots :~~}

\I\
Zoye Meos 0° + ¢ sin 0°),

.V\ 1.360° 1-360
:.\’“.21 = 1| cos—— ——f— f5n—— )
NG 3

N/

O
B z3 = 1 cos
y©

2. 350° o2 360°)
ZS]_H —_—

N

%3 = 1l eos ———-

2e = 11 cos —+a<,m—

(
(5 i ™50,
(

4-360° £:360° )
5 H

of (4). If two values of  differ by an integer which is divisible
by 5, then the two values 6 which are determined by (33) differ
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by an integer which iz divisible by 360°. Therefore the two roots
(17) of (4) which are determined by such values of & have co-
terminal amplitudes and are equal. Thus it has been proved that
there are five and only five distinet numbers which are roots of
(4). These numbers are the num-
Y

bers (34). These numbers are the
Fifth roots of undty. .

The symbeol ¢ is often used to des- . A\
ignate the number which was given
the notation z; in (34). Therefore AN x
by De Moivre’s theorem & = z, O '
& = 23, ¢ =z, In this notation , AN
the five fifth roots of unity are 1, ¢, ¢ Ky \
2 €, €. These complex numbers <\
determine respectively the five points v
which are designated by 1, ¢, &, ¢, & |
in Figure 4. These points lie on the.firele whose center is the
origin and whose radius is unity. They are the vertices of a reg-
nlar pentagon. , 7
8. The nth roots of unity. DE: Moivre’s theorem will now be used
to solve (7). If the not:ytib:ri'(l”i) is used for z, then (7) becomes

E €

¥

v FIGTRE 4.

(35) [r(cos § A% 8in )" = 1(cos 0° + 7 sin 0°).
(M
Hence by De Moiyre's theorem (7) becomes
o
(306) :,\:'"'1(’(303 nf -+ 7 sin #0) = 1{cos 0° -+ ¢ sin 0°).

&
There@m’r and 6 are determined from

(%J’)' nff = 0° + k-360°, k an integer,
O
) =1

Therefore r = 1. Also, if two values of k differ by an integer which
iz divigible by =, then the two values of ¢ determined from (37)
differ by an integer which is divisible by 360°. Then the two roots
{(17) which arc determined by such values of & have coterminal
amplitudes and are equal. Thus it has been proved that there
are n und only n distinet numbers which are roots of 2" = 1.
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These numbers are

2o = 1{cos0° —+ Zsin 09,
1-360° o 1-360°
27 = 1| cos + 28in —— ],
1 T
2-360° e 2-360°)
—_— ) 11 ———————
(39) 2o 1| cos . £ i . ,
. O\
’ - 5 \:\'
n—1)-860° . (n—1)-3600
Bp_1 = 1 ’7(’.()."} u + 1 8ln (__-__)—.‘j“mj
7 N
These numbers are e nih rools of undty. “\ Y

These n numbers (39} may be written simifancously by

%-360° An360°
(10) 2y = 1 (eos — + za{lsﬁ— --),

e T
k=012 .&m ~— L

Now z; iz actuully a real ny*r‘p’i)ér, because ils amplitude is 0°,
and hence, by (9), the Y—c,q@féﬁnate of the point determined by
zo is zero, Also, if » is an &ven integer, then #/2 is an integer, and
the value n/2 of £ givend = 360°/2 = 180°. By (9) the Y-coor-
dinate of the poing determined by 2,0 is zero. Hence, if # is even,
then 2,/ is a real'mtumber. If n is odd, then zq is the only real
number among\the roots (40). These results are summarized in
theorem 1, N¢/

THEQREI‘Q“I. If n 48 a posilive integer, then there are n distinct
nth ?:a@s"bf unity. They are the numbers (89), that is, the numbers
(4@NS If n 45 odd, then zg is the only real number among these roots.

R L7 U5 even, then zg and Znio are the only real roots.

\ )
PROBLEMS

1. Apply theorem 1 to find the fourth roots of unity. Show that these
raots are the same as those found in section 2 hy factorization.

2. Apply theorem 1 to find the sixth roots of unity. Show that these roots
are the same as those found in problem 4 in section 2.

2. By comparing the results of problem 2 with {24} determine which of the

sixth roots of unity are eube roots of unity and which are not cube roots of
unity.
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4. Apply theorem 1 to find the eighth roots of unity. By ecomparing these
results with the resulls of problem 1 determine precisely which of the eighth
roots of unily are fourth roots of unity and which are not fourth roots of unity.

If the symbol ¢ is used to designate the number which was given
the notation z; in (39), then by De Moivre's theorem &€ = 2y,

- e”_l = 2,_1. In this notation the n nth roots of unity are
i, ¢ &, -, €L These’complex numbers determine respectively
n pointg which lie on the circle whose center is the origin and
whose radius is unity. They are the vertices ol a regular poly gon

of n sides. The following theorem has been proved. A ¢
\
TuuorEM 2. If n s o positive tndeger, and if e destgnates e com~

plex number cos (360°/n) + 4 sin (360°/n), then the n .mﬁh roots of

unity are 1, ¢, €%, v+, 71 D

AN
If n = 3, then e in theorem 2 is the ('ompl{"‘{, number which
was designated by » at the end of section b \~

9. The nth roots of an arbifrary non- zerO\COmplex number. De
Moivre's theorem will now be used bo‘ mﬂvc the particular bino-
mial equation o

(41) 4=w
If the desired root is ;Jl\ren thc notation (17), then (41} becomes
(42) [r{cos @ 4 % ﬁm’})]“ 1{cos 120° + < sin 1207).
Hence by De Mowr\b theorcm (41) becomes
(43) ?‘4((3(:11-3 4§;+ i sin 48) = 1(cos 120° + ¢ gin 120°).
Hence r t—-“\xf:,.\.ﬁi;id 6 is determined from
(44) N7 49 = 120° + E-360°, & an integer.
Hche
‘\?&5“) g = 30° + £-90°, k an integer.

Now, if two values of & differ by an integer which is divisible by 4
then the values of @ differ by an integer which is divisible by 360°
TTence there are four and only four distinct roots of (41). They

are
(46) 2z = lcos (30° + %£-90%) + { gin (30° 4+ k-907)],
E=10,1,235
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It is o be noted espeeially that cach equation of the type (7)
has on the right-hand side a nomber whose modulus is 1. Equa-
tion (41) also has this property.

As an illustration of the solution of an cquation of the type (8)
in which the modulus of ¢ is not 1, the equation

47 B =141
will now be solved. If z is given the notation (17}, then (47) be-
comes ~
{48) [r(cos 6§ 4+ 7 sin 6) = +/2(cos 45° + i ¢in 15°). O\
Hence by De Moivre's theorem (47) becornes ) O ’
(49)  r*(cos 38 - 4 sin 36) = 4/%(cos 45° + 4 sin 43").
Therefore + and ¢ are determined from o
(507 P = 4/2, \

~
{51) 30 = 45° 4- k-360°, k atl Ginteger,

and the fact that » is & positive number. It is a property of the
real number system that there is wlie and only one positive num-
ber which satisfies (50). Thisspumber is ~/ V2, that is, /3.
Also the values 0, 1, 2 of Ic;g:ljé the only values of 4 such that the
values of ¢ which arc détermined from them by (51) are non-
coterminal. Hence there arc three and only three distinct roots
of (17). They a-re\t«ﬁe"numbcrs

2p = \'7;2[(;5,3 (15° + 0-120°) + ¢sin (15° + 0-120°)],
(52) 2 5,@2%[003 (15° + 1-120°) + ¢sin (15° + 1-120%)),
z{%‘x/ﬁ[cos (15° 4- 2-120°) + 4 sin (15° ++ 2-120°)].

SO\ . . . .
hq' new idess are involved in the solution of the general bino-

magh cquation (8). If the required root 2 is given the notation

{ #(€os 8 +4sing), and the complex number ¢ the notation
s(cos « + i sin @), then by De Muoivre’s theorem the equation
Z" = ¢ becomes

{53) ™ (cos nf + ¢ sin nf) = s{cos @ -+ 7 sin a).

Therefore r and 4 are detormined from

(54) ™ =8, 7 positive,

(55) A = e + £-360°, % an integer,
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Now ¢ is a positive number. Also it is a property of the real
number system that there is onc and only onc positive number
whose nth power is s. This positive number is designated by /'s.
Therefore r = v/s.
Also {65) becomes
a + k-360° )
(56) § = ——— kan inleper.
7

Now, if two values of & differ by an integer which is & multipleofs
n, then the two values of ¢ determined from (56} differ by An
integer which is a multiple of 360°. Therefore the valug$ of the
root r(cos # + 4 sin 8) which are determined by these twe' values
of % are equal. Hencc there are exactly n distingt(roets of the
equation 2 = ¢. They are the numbers 2o, zl,mf\:i-.,' Zn_1, Whose
values are Y

g~ f2 o \
20 =‘\Ws(cos—+z'sin—), PN
Vi

) LC
_ o+ 1-360° O, a+ 1:360°
2y = Vs ({:os — S +¢sin —- ),
n AN )

(67 - : ONY

O+ (n— 13360
Pl = %gwé.a ( )
\ 1
PAS, __a+m—nam1
AN/ + {gip ——MM—— |-

4 7

If e lﬁ\ékéﬁ\HPd as in theorem 2, then the product zo- € is the number
1. i general,
~58) e =z (j=1,2,--,n— 1.
3
Hence the following theorem has been proved.
TaporEM 3. Let n be a positive tnleger and ¢ designale the com-
plex number cos (860°/n) + i sin (360°/n). Lel a trigonometric

form of the non-zero comples number ¢ be s(cos a + T sin ), Then
there are exacily n roots of the equaiion & = c. They are the com-

plex number v/ slcos {a/n) + ¢ sin (a/n)] and the products of this
comples number by ¢, €, * <, e
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If ¢ > 0 and n is odd, then 2z is the only real root of (8). If
¢ >0 and n is even, then z; and z0€"'? are the only real roots.
If ¢ < 0and nis odd, then z¢,_1y2 I8 the ouly real root. If ¢ < 0
and # is even, there are no real roofs.

CoroLLARY 1. If d i3 a non-zero real number, then the cube rools
of d* are d, dw, dw?.

Proor. Ifd > Oandifn = 3,5 = &, @ = 0°in theorem 3, then
the result staled in the corollary is obtained. If 4 <‘(\),‘\Lhcn
—d > 0. By the preceding case the cube roots of f==d¥ nre
—d, —dw, —dw®. Therefore the result stated in the\cdtollary is
obtained by multiplication by —1. ~‘ 3
£ &

. 2\ .
CoroLLARY 2. If d and b are real numbérd\such thal & = b°
then d = b, O
9.\l

Proor. If d or bis 0, then the othetis 0, and they are equal.
It d >0, then d = b by the prapgrtj of the real number system
which follows (55). 1f & < 0, thepd-~d > 0, and by the preceding
case —d = —b, Thercfore d '=b

H

Y

L\ PROBLEMS

N
+ Find the cube ¥96ts™6f  and the filth roots of —4.

. Find the cube.m of —w and the fifth roots of 7.

. Find the fifkhwtots of —1 and the fifth roots of w.

. Find the¥sixth roots of —1 and the sixth roots of —e.

- Find gheMourth roots of —1 + 4 and the Gfth roots of (1/2) — (\/3/2)i.
. F‘i\rga‘shn fourth routs of —§ —7 and the tifth roots of {—1,/2) — (+/3/2}.

o o 0 b

10, sRelation between the cube roots of a complex number and

m:d'}é cube roots of the conjugate complex number. If ¢ + diis a

N\ fomplex number, then the conjugate complex number 1s, by defini-

tion, ¢ — d@i. By (11} these complex numbers have the same posi-

tive number as moduli, This modulys will be designated by s.

It s also true, by (9) and by trigonometry, that, if « is an ampli-
tude of ¢ + d¢, thon —a is an amplitude of ¢ — di. Hence

(59) . ¢ + di = s{cos @ + ¢ sin @)

(60) ¢ — di = sleos (—a) 4 sin (—a)],
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The three cube roots of ¢ 4 dz will be designated by A4, A, As.
Therefore, by theorem 3 and (59),

%(cosf—i—ismE),
3 3

/11
; - 360° o
(61) Az = Ao = \:yé (G(]S E—BJ_ + 7 sin @) ,

. - 2-360° 2-360°\ "\
Ag = A = Vs (G(]S ot 3 ’ + iﬁilli_g.'_bo i

¢\

/

'S\
The three cube Toots of ¢ — d¢ will be designated by BB, Ba.

Therefore, by theorem 3 and (60], R
_ N . m’\'\.'
Bl=\zys(cos ;—I—z’sin a), 3
4 [y ) \.:

A

: —a+ 36000 Y —a 4 360°
(62) Bz-_—.Bjcu:‘\‘/;((:us—aS—ﬁ—:' i sin o« + 36 ),

L

= — @2 360° — a+2-360°
B: = B’ = Vs (cos “@.—3~— + sin L_).
By lemma 1 it is true tl'iat .
xﬁ‘{\:y; Y (eos 0° 4 4 sin 07).

(63) A 13{\
Hence A B, isg}:éal Algo, by (614) and (62,), it is true that the
modulus of B} fis'x the modulus of 4; and that an amplitude of B,
is the neg@i‘\'g of an amplitude of A;. Hence By is the conjugate
of Al,&gam, by (61 2) and (623), it 1g true that A 2B3 = Ale1w2
= 43B® = 4,B;. Now the angle (—a + 2-360°)/3, which is
zyn\}j‘m')plitude of B, is not the negative of the angle (o + 360°Y/3,
«\M\wh’ich is an smplitude of 45, But (—e + 2-360°)/3 is coterminal
Wwith —(a 4 360°)/8, since their difference, [{—a 4+ 2-360%) /3]
— [~ (@ + 360°)/3], is an integer which ig a multiple of 360°.
Henece —(a -+ 360°)/3 is an amplitude of J. Hence By is the
conjugate of Ag. Similarly if is proved that AzBy is Teal and By
is the conjugate of 4. In lemma 2 these results arc summarized.

Lewva 2. Let a trigonomelric form of the complex number ¢ + di
be s(cosa +isma). Then @ trigonomeiric form of ¢ — di is



20 BINOMIAL TQUATIONS

sleos {—a) + isin {(—a)]. Lt Ay designate the porticular evube root
V sfeos (a/3) + < sin (/)] of ¢ + di. Lel By designale the par-
ticular cube root Vslcos (—a)/3 + i sin (—a)/8) of ¢ — di. Then
the three cube rools of ¢ + di are A1, wAy, w?4y, and the threc eube
roots of ¢ — di are By, wBy, w*Br. Also By is the conjugale of A 1»
and A1-By 25 a real number. Also o®By 1s the conjugate of wd;,
and wA-w’By s a real number.  Also wB) is the conjugate of w*A,,
and o®A 1 wBy s a real number. N\

Lemma 2 states the important fact that the three cube ro0ts ‘of
a complex number and the three cube roots of the conjugatos ctim-
plex number ean be paired so that in each pair the twd numbers
are conjugate complex numbers and their product is ;:h.fez-l.t number,

It is to be noted cspecially that the proof of lemm& 2 holds re-
gardless of whether & in (59) is or is not zero. “Therefore lemma 2
is true even if ¢ + i is a real number. x.\\j

W

PROBLEMS\\,)

1. Find the cube roots of —1 + ¢ and\the cube roots of —1 — 4, Rhow
that these cube roots can be paired s ificated in lemma 2.
2. Proceed as in problem 1 for w'dne its conjugate.
-8. Proceed as in problem 1 forSiand its conjugate.
4. Procced as in problem L40x —8 and its conjugate.
5. Procecd as in pl’Ob]GIp.“NUI' (1/2) 4+ (+/3/2)7 and s conjugate,
6. Proceed as in pro lé{iri for 1 — 7 and its conjugate.

There is furthet discussion of complex numbers in chapter 8.
Other interestiig/and iraportant facts about roots of unity are

discussed in ghe’references cited at the end of this book.
'"\.‘~
P \.



CHAPTER. 2
CUBIC AND QUARTIC EQUATIONS

1, The general cubic equation and its reduced cubic equation,
In section 2 of chapter 1 the equation #* = 1 was solved by fae
toring the function 2® — 1. The equation 22% — bz® — 4 %3
= 0 can also be solved by factoring, since 223 — 52? 42 ¥3

=(z+ 1z —-32x —1). A method of finding sueh simple
factors of functions of this kind will be cxplam{d AT (haptel 3.
Ilowever, there are cubic functions which have no\s}_rnph, factors,
Therefore a general method of solving cubic equatmm will now

be explained. \

It iz assumed that the cocfficients a, {Jz\Q, @ of the general cubic
cquation PN\
(1) axt + ba? +fxs“+d-v0

are real numbers, and that th’e Ieadmg coefficient @ is not zero.
A real cubic equation is an et;uatlon of the form (1} whose coeffi-
cients have these two prgpertios.
A number k is a ropf of (1) if and only if it is & root of
N b d
2 WOz 4 — x + e —i— -
N \
This is the x]fhez‘;l.mng of the statement that (1} and (2) are eguiva-
lent eq ﬁ})ﬁs.
It wilMow be explained how the roots of (2) can be found from
thewedts of a more simple cubic equation. If z and y arc related
\"03} Fhe equation
. b
3 r=y — —
{3} 2’
then 2 determines y and 4 determines = If = is a root of (2) and
if ¢ is computed by (3}, then y is a root of the equation which is
obtained by substituting from (3) in (2). This eguation i3

. (C bz) " d bc+2bs)_0
(4) Y+ o 3% Y 3¢® 274/
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Conversely, if ¥ iz a root of (4) and if (3) is used to compute g,
then @ is a root of (2). The complicated coefficients in {(4) enter
frequently in the following proof. Hence they will be abbreviated
by

¢ b d  be 2
® =T Pt e
Then {4) becomes
(6) ¥+ Cy+ D=0 Q

Therefore all the roots of (1) are obtained by solvingoﬂie’more
simple coquation (6) for ¢ and then determining z by (3)X ) Equation
(6), determined from (1) by (5), is called the Tr?d'eecc{ﬁ.é‘{ebz'c ecuation

for (1).

~\
2. Algebraic solution of the reduced cubic ggnation. 1If ' = Q,
then the equation (6) is the binomial equ:{’r;ion
o\
) Y = ~D."

p%¢ 2

A method of solving this equz;tién‘ was explained in section 9
of chapter 1. A method of salmg (6) if € 0 will now be ex-
plained. AN

If €0, then each valve of y in 322 — 3yz — € = 0 deter-
mines two non-zero valites of 2. Conversely, each non-zero value
of z determines oneswalue of ¥ because then this relation can be
written in the £ oﬁrg(

O ¢
®) OO y=z- 2.

AN/ 3
In parpi@’l}ar, a value of ¥ which satisfies {6) determines two non-
zerq, Jaties of z which satisfy the equation obtained by substi
tutmg (8) in (6). This equation is
4 n\: \

~ (9) 3 o3
} 2 ——4+ D=0 =0
N\ 272° + g
Conversely, each non-zero value of z which satisfies (9) determines
a value of ¥ which satisfies (6). The non-zero values of z which
satisfy (9) are the values of z which satisty
3

'
(10) BHDS - o
o7 : #= (),
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Therefore, if € # 0, all roots y of (6) are found by using all roots
z of (10} in (R),

Now (10) is & quadratic equation in 28, 'The discriminant of
this quadratic equation will be designated by B Hence

C/S

11 R=D"4+4—.
(11) + o
Also, the two numbers which are the roots of this cquadratic equa-’“
tion: are (—D + ‘\/E);"Z and {(—D — \/I_B)/Q. Hence, if 2 silise

fies (10), then z satisfies one of the equations N\
-D+ VR N
(12) B — "
2 '""\\.
—D—-vVE
(13) &= o

Conversely, if ¢ satisfies (12) or (13), th;zn}z satisfies (10).

It was proved in section 9 of chapter 1 that there arc exactly
three roots of (12) and cxactly thrée roots of (13). The three
roots of (12) will be designatqdfby 2y, 23, 23 and the three roots
of (13) by 24, 25, 2. Then,by (8), there are six values of i

O'c _
{14 yjsf\&- e G=1--06-
It will now be pfgyed that
(15) DT s =y, vs =, Yo = 1

Hence 15%1“11 follow that there arc exactly three roots of (G) if
¢ g
»CEh}a first stop in the proof of (15) is the proof that
3
-0 —-C -

(16) Zyzy = 5 Bag = rak B325 = e

The faet that zj2; = —C/3 will be established by using corollary
2 of chapter 1, Thus, first it will be proved that z,24 is real and
that —C/3 is real. Then it will be proved that (z120)® = (—(/3)8,
Now, if £ £ 0, then the right-hand sides of (12) and (13) are in-
deed conjugate complex numbers and therefore, by lemma 2 of
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chapter 1, it is true that zyz; is real. DBut, if B >0, then
(=D + \/E)/Q gnd {—D — \/E)/Z are unequal real numbers,
and hence lemmoa 2 cannot be used.  But then, by eorollary [ of
chapter 1, 2y is real and 2z is real, and honee 2,24 is real. Noxt,
by the hypothesis that e, b, ¢, d in (1) are real, it is true by (5)
that —C/3 is real. Finally, z,° = (—D + \/E) /2, since 2; is a
root of (12};als0 2,° = (—D — \/ﬁ)/z, since 24 15 a root of (13).
Hence 21°2,* = (D — R)/4. Hence, by (11), it is true, that
(2124)° = (—C/3)%. This proves the first equality in (16}, She
other cqualities in (16) are proved in the same way. RAY.

The first equality in (15) will now be proved. Thus, by (14),
Yo =24 — (C/324). Tence, by (16), y4 = 24 + z¢™\Aguin, by
(4), 41 = 21 — (C/32), and hence, by (16), y1 =&+ z4. There-
fore g4 = y1. The other equalities in (15) arce {i‘tfhved in the same
way. It is especially to be noted that

i=2tz, =t zb;,"\‘y\s =23 + s

Also, by lemma 2 of chapter 1, z, =W, 23 = w2, and 25 = wzy,
z5 = w’2s. Therefore o\ o

(07 =242, gy = WM 0%, Yz = o2 + wzy.
This completes the proof ofNheorem 1.

Taeorvem 1. The gr{’n?ral cubic equation ax® + b 4+ ex + d = 0
has exactly three veots™ These roofs are the numbers 1 — (b/8a),
y2 — (b/3a), y; 5%/’3@), w which Yy, ys, ¥z are the three roots of
the reduced equiition 4+ Cy 4+ D = 0, whose coeflicients O und D
are determindd)from the coeflicients o, b, ¢, d by (8). If C =0, then
the TO0LS My {2, Ya are found by theorem 3 of chapter 1. If C = 0,
then th%qwmber R is determined from C and D by (11). Then the

?'oo't\s}yl, Yo, ys are found from the vools of two awriliary equations
M(;I:s,) ‘and (18). If 2y ds one of the roois of (1 2), then there s exactly
\ gne rout of (18), designated by 24, such that the product 2124 18 reod.

Then the three rools y1, s, yz are given by (17).

Tt is to be noted especially that only addition, subtraction, multi-
plieation, division, extraction of roots are used to express z; and
24 I terms of the coefficients € and 7). These processes are alge-
braic processes.  Therefore these formulas give un algebraic solu-
tion of the cubic equation. These cxpressions are known as Cardan’s
Jormadgs.
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PROBLEMS
Solve the followiog equations by Cardan’s formulas,
1, 828 -+ 242% + 48z — 81 = 0. 2. x* + 627 + 18 — (181/27) = D
3. 2% — 62 4+ 14z — {343/27) = 0, 4 7% — 327 4 4 — (28727 = (.
5. 27r% — 2Tx® + 1172 — 59 = Q. 6. &0 + 1222 — 18s + 9 = Q.

7. 8:% F 182> +27x —d =0, 8. 272 + 27r 4 14dx — 64 = 0.
9. #% + 3c? + 5z 4 (100/27) = 0. 10. 5° 4 30 + 2¢ — (28/27) = D.
11, 2% — 322 4+ 4o — (1/54) = O 12, 32 — 3x® — 2z 4 (268/27) = 0.
13, 2% — 62?4+ 152 — 19 = 0. 14, &% + 652 4 150 + 11 = 0, 4

15. 2 3 622 + 9z + 6 = 0. 16. ©° — Bz + 9z 4+ 4 = 0. \
AN

8. Trigonometric golution of the cubic equation with real “coots.
It is to be noted that in cach problem of the precedmg H&t the
numbers on the right-hand sides of (12) and (13} ure reﬁl numbers,
hecauge E s g positive number. Thus in these plublt‘mf.-, only the
cube roots of real numbers arc nceded. If axmimerical cubic
should lead to a value of E which i & negative)number, then the
cube Tools of two complex numbers whicl #u8 not real would be
needod. They could be found by ‘rheon@ﬁ 3 of chapter 1. How-
aver, there is a more practical mPthud ogolving a cubic for which
E < 0, This methed will now bs‘ehpla,med
In the cquation &N

18 £ T+ D =0
it is now assumed tha.t’C"'%i 0 and that

& d o
19 XN UDEr4a— <o

(19) -

Also Dis & reKL m]mbcr, by (%) and the hypothesis that the coef-
ficienls ¢, /yle, d of (1) arc real numbers, Hence D* = 0, and

< 0 bw o).
If D = {, then equation (18) beeomes
(20}' y* + Cy = 0.

Its roots are the real numbers 0, —I—\/ C - _C.
1f D > 0, the following method involves only real numbers and
is preferabls to Cardan’s methoed for obtaining numerical results.

Since €' < 0, the number V —4C/3 is positive. Then cach value
of ¥ in

\/T-'l(?
(21) y=N—5¢
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determines a value of 2. Converscly each value of 2 determines a
value of y. In particular, a value of ¥ which satisfies (18} deter-
mines & value of z which satisfies the equation obtained by sub-
stituting (21) in (18). This equation is

o0 ( —40)33+C\j—4c D=0
#2) N3 )¢ g ctP=0

Converscly, a value of 2 which satisfies (22) determines a value
of y which satisfies (18). Now the roots of {22) are the roots®of

O\
3 D N
23) A"t — O
(Vv —ac/3p A\
Therefore the roots y of (18} are found by using$he roots z of
(23) in (21). %)
It will now be proved that, if « is any an\glg, the roots of
(24) 47° — 37 — cos 3o D0
are the real numbers P\%
(25) cos @, cos (o + 120%; cos (a + 240°).

If ¢ is any angle, then cos‘&i;ff: cos (¢ + 2¢) = cos ¢ cos 2p —
sint ¢ sin 24 = cos ¢(2 cos® $i— 1) — 2sin® ¢ cos ¢ = 2 cog® b —
cos ¢ — 2 cos (1 — cg8?%) = 4 cos® ¢ — 3 cos ¢. Therefore
4¢05° ¢ — 3cos ¢ —.€o88¢6 =0 if ¢ is any angle. Now, if « is
any angle, then thr\escX true equations are obtained by replacing ¢
in turn by @, ¢ $3120°, & + 240°. These threc equations are

O 4cos®a — 3 cosa — cos3a = 0,

(26) cqsi‘%?a ~+120°) — 3 cos {« + 120°) — cos 3(a + 120°) = 0,
4805 (& + 240%) — 3 0o (o -+ 240°) — cos 3(a 4 240°) = 0.
Bu’b ©0s 3(a + 120°) = cos (3a + 360°) = cos 3a and cos 3(a +
N240°) = cos (3a + 720°) = cos 3a. Hence equations (26) become
4 (cos a)® — 3 cos @ — cos B = 0,
@7} 4fecos (@ + 12097 — 3 cos (e +120°) — cos 3a = 0,
4[cos (o + 2409 — 3 cos (a +- 240°) — cos Be = 0.

It ig to be noted especially that the third term is the same in cach

of these equations. Also equations (27) state the fact that the
numbers {25) are the roots of (24),
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It will now be proved that there is an angle @ such that

(98) 08 Ao _ I
4 (V —4¢/3)

This can be written in the form

—4D
(29) cos B = —————-
(V' —ac/3)
N\
Therefore it is sufficient to show that
o
.le o \"..
{30) < < 1. O
(V —40/3)% AT

This continued inequality is true if and only if ,\\
Fa
APV

Also (\/ C/3)¢ = v (%27, 3/27. Thoroforo\(‘%l) is true if and only
#|D]| < 24/ —(3/27, and henee if s and ‘only if D? < 4(—C3/27).
Dy (19} this last inequality is trua.

It has been proved that the?a s an angle 3« such that (28} is
true. The angle a iz obtainsd by division, If this value of « is
used in (25), the resulting ¥cal numbers are the roots of (23). It
this value of « iz uscd{'.h.}

O (—4(}
CO8 o,
N 3
@ O N2 cos o+ 1209
W —— cos (e e
O 3 ’

~“\‘. ; —_ J]’
aos {a + 2107,

3L

the roots of (18) are obtained.
This completes the proof of the following theorem,

TauwoseM 2. If ¥ +Cy+ D = 0 is an equation with real
coefficients such that D? + 4(C%/27) < 0, then C < 0. If D =0,
its roots are the real numbers 0, —i—\/:(Y RV, | S D # 0, then
\/—46‘/3 18 a positive number and there is an angle a such that (29)
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1s true.  Then the roots of y* + Cy + D = 0 are the real numbers
(32).

In applying theorem 2 fo obtain numerical vesults logarithms
should be used. By (29} the sign of cos 3« is opposile to the sign
of D. If D < 0, an acute angle 3« is {ound from

(33) logeos8a =log (—D) — 1.5log (—C) 4+ 1.5 Tog 3 — log 2,

If D > 0, then there is an obtuse angle 3a and there is an iy te
angle ¢ guch that .
oA\
(34) 3(1 = 1800 - f', ;.\ \"~
logeos ¢ =logD — 1L.5log (—C) + 1.5 l(‘);‘;\‘?}‘.—' log 2.
Alter 3o is found, from (33) or (31), then « is ol'){:ﬁnm.l by division.
Now « is acute, since 3a is belween 0° and 1808 "Thercfore e >0
and logy; = log cos a + [log (—() -+ loghh log 31/2,  Also a
-+ 120° terminates in the second quadrans, and there is an acute
angle # such that cos (« + 120°) 25 cog 5. Therefore 3, <0
and log ( —y») = log cos 8 + [log (*Q) +log 4 —log3]/2. Again,
¢ + 240° terminates either in thevthird quadrant or in the fourth
quadrant. [If it terminates in'the third quadrant, there is un acute
angle ¥ such that cos (o .—I—:'Qi(}c) = ~cogy. Then g3 < 0 und
log (—y3) = log cos v A\log (=) +logd —log3]/2. If a+
240° terminates in ’Tl}:fq\fourth quadrant, there is an acute angle
such that cos («45240%) = cos 8, 3 > 0, and logyy = logcos é
+ [log (—C) 4Mog 4 — log 31/2.

Homner'sgrebhod, which is discussed in ch apter 4, can also be used
to c'ompqteé the roots of equations to which theorem 2 ig applicable.
Other facts about these equations are diseussed in the references
&t thelend of this book,

N

&

SN PROBLEMS

N\,
\ 3 Bhow that the redneed cubie equulion of each of the following cguations has
R < 0. Then solve the cquation by the method of thearem 2.

La® 4622402 4+1=0. 2.2 ~ 2 — 3243 =0,
3.::;3-!—3:rr2—22:—5=0. 4.3:3-{-6;::2—{—10:1:—[—3:0.
B.2® =8 — 344 =0, 6. 2 4 12¢% 1+ 43r + 46 = 0.
7.3 + 02 4 3: —2 =g, 8 205 G — 9 — 5 =0,
9. 453 — 24 L Ady — 93 = 10 2% — 622 4 62 4+ 8 = 0,
1L 26 — 6 4 L2 =, 12. 32% — 1822 31z — 13 = 0.
18 22" + 1202 4 202 +-9 = 0. 4. 2e® 1222 4 182 4+ 5 = 0.

16. 1202° 4+ 180z% — 1000 — 20 = 0, 18, 4,7 + 8622 4+ 1022 4 89 = 0.
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4. Discriminant of the cubic equation. By theorem 2 the roots of
the reduced cubie equation are all resl il £ < 0. By (3) = is real
if and only if g is real, Tt will now be proved that there are other
conditions under which the roots of a real eubic ure all real. There
is an expression involving the coefficients of the cubie from which
the character of the roots of the cubic can be determined with-
out finding the roots. 1t is to be noted that there is an analo-
gous fact for the quadratic equation a2? + bz 4+ ¢ = 0. The dis-
criminant of this equation is b — dac. It is known that the rodt$
are real if and only if the diseriminant is greater than or eql@,l
to zero. P

The diseriminant of the reduced cubic equation (8) 1s deslgnat{,d
by A. By definition

A= (y — Jz) {y1 — JS) (y2 — ?}3)%\

An cxpression for A in terms of the eoefficierit®'C and D of (6)
will now be obtained. Then later it will hefPrived that the roots
of (8) are all real if and only if A = O

It will now be proved thal

(35) A= —4C*~~— 27J[)2

If (Y = (), then (6) becomes_ ‘a = —D, and is roots are gy =
VD, o = wy, ¥z = W Henfe Y~ Yz = vV D(1 — w),
Y1 — Yy = \/—D(l — gﬁ”}‘ ¥z — ¥z =V —D{w — «%). Henee,

by the definition, \\
{(V’ DF( — )1 — e — )]

Also 1 + w —1-\w = (} by the definition of w, and «® = 1. There-
fore (1.¢a¥l — o?) =3. Again, o — o® = v/3i.  TFinally
(\‘V—R’}\ = —D. Tlence A = (—D-B-\/gi)z = [?.27% =
—2789%" Therefore {33) is true if ¢ = 0.
If\C # 0, then, by (17}, ¥ — y2 = {21 + 24) — (w21 + wz4)
\F (- (e — o¥24). Also y1 — s = (21 + 20) — (%21 + w2y)
= (I —o)(z1 — wz). TFinally gy — gy = (wer + o) — (0’2
4 wz4) = (w — w?)(z; — 25). Henee, by the definition,

A=l —ea)(l — 0—‘2) (w — w2) (21 — z4)(21 — w2g) (21 — w234)]2-

Now it was proved in the preceding ease that (1 — w}(l — «?) = 3
and that o —w? = +/34  Alwo it is verified directly that
(21 — 2a}(7y — w2g)(z; — wizy) = 2;° — 2,°. Hence, by (12) and




30 : CUBIC AND QUARTIC EQUATIONS

(18), this product is v/K. Therefore A = (3-4/3i-v/E)? =
—27R. Then (35) follows by (11). This completes the proof of
the following theorem,

TororeMm 3. The discriminant A of the reduced cubic equation
y® + Cy + D = 0 is by definition the function (5 — y2)2(y1 — ya)?
(ye — ya)? of ifs 7ools Y1, ya, ys. The value of A in ferms of the
coefficients of the equation s —4C° — 27D?  Also, A = —£7R.

The value of the function (z; — 2)%(21 — @3)*(zs — ay)° of\the
roots of the general cubic equation (1) will now be detemined in
terms of the coefficients @, b, ¢, d of that cquatﬁcir}‘. By (3)
Iy =Ty =Y - Yo, Ty — T3 = Y1 — Y, Tz — T3 = Pa — ya. Also,
by (5} and (35), \\

(36)  a*A = —dac® + b%® — 4534 + 18ahed — 27,

Therefore, by the definition of A, \\ /
B7) a'(m — 22)%(w1 — 33)%(z2 — x?s)g
= —4&53{\-’{:—’25262 — 4b°%d - 18abed — 274%0°.

The left-hand side of (37) IS} by definition, the diseriminant of the
general cubic equation (1), Henee the following result has been
proved, O
¢ \J

THEOREM 4, “The discriminant of the generol cubic equation
ax’® + ba® 4 ek d-d = 014s, by definttion, the function a*(z; — x9)*
(@1 — 2a)’fwft 23)% of ils roots zy, 7, z5. The value of this dis-
crimz’nqnm a*A, in which A is the discriminant of 4tz reduced cubic.
The: dlue of the discriminant of the equation az® -+ ba® 4 cx + d
= d W terms of the cocfficients of this equation is —4ac® + b%?

..;;,‘jﬁb‘?d + 18abed - 27q%%,

It is especially to be noted that the funetion a*(z, — x4)®
(21 — 23)*(xa — 3)? is used as the definition of the diseriminant
of the gencral cubie instead of the function (&) — z0)%(x; — 3)°

(zs — z3)%. In scetion 3 of chapter 9 there is an explanation of
this fact, :

Levma 1. A4 cubic equation with real coeflicients has three real
rools, or il has one real root and two complex rools whieh are not real.
These non-real roots are conjugate complex numbers.
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Proor. Since z is real if and only if y is real, it is sufficient to
prove the lerama for (6). It will he proved that, il 4 and B are
resi numbers such that B = 0 and A 4 B{ i3 a root of (), then
A — Biand —24 arc the olher two roots of (6), Dy substituling
4 4+ Biin (6) and performing the indicated operations, the equa-
tion A3 —34B2 4 CA + D + (3428 - B® 4 CB). = 0 is ob-
tained. By the definition of equality of complex numbers, this is
true if and only if A® —34B%*+ CA + D =0 and 34’B — B°
+ ('B = 0. These same conditions arc obtained if A — B{is st >
stituted in (6). Again, since B £ 0, the second condition 1mpL1t3b
B2 = 342 + (. If this is uscd in the first condition, the (Jqua’rﬂon
—8A4% — 20A + D = 0 is obtained. Therefore —24 is the third
root of (6). Y

TuroreM 5. The roots of the real reduced cubif:‘éqﬁaiion (6) are
all real if and only if A = 0. :

Proor. By the definition, A = 0 if ¢ h\\wf Y1, Y2, Y3 18 a real
mymber. This is the meaning of that(part of theorcmn 5 which
states that the roots are all real onlwif A = 0.

It will now be proved that, if A 0, then the roots are all real.
This will be done by showi ing: Hmt the second of the two possi-
bilitics in lemma 1 contradiets’the hypothesis A = 0. If g is the
real root of (6) and . is/given the notation s + #, in which s and
¢t are real numbers, @hd ¢ =0, then yz = s — &, Therefore
—ys = (y — s)k\tz and g1 —ya = (g1 — ) + 1. Also yg
—yg = 2. Hénee A= {[(y1 — 8) — Hli(y — ) + ti )2 =
[y — &) + J?}?( 4.-:2) Since t, 71, s are all real and ¢ # 0, it is
frue that (’g}\"— 9220 and [(;n — )* + *1P = i* > 0. There-
fore A §(} This eontradicts the hypothesis that A = 0.

Tm orEM 6. The roots of o real cubic equation are all real and
1mz&gual if and only if s discriminant is posiive. Al least two of
1he roots are equal if and only ©f is discriminant is zero; then all the
Toots are real. One of the roots 4s a real mumber and the other fwo
rools are congugate comples numbers which are not real if and only
if the discriminanl is negalive.

Proor. By (3) and the rclation between the discriminant of
(1) and the discriminant of (6) which was proved in theorem 4, it
is sufficient to prove theorem 6 for (6). By (35) A is a real num-
ber. Therefore A >0, A =0, or A <0. By the definition,
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A = 0if and only if at least two of the roots arce equal. Then the
roots are all real by theorem 5. Also, the roots are all real and
distinet if and only il A > 0, by theovem 5. Aguain, if one of the
roots is a real number and the other two roots are conjugate com-
plex numbers which are not real, then A < 0 by the proof of
theorem 5. This is the meaning of that part of the last sentence
of theorem 6 which states that the roots are of this nature only
if A <0, Fnally it will be proved that, if A < 0, then the roots
are of this nature. This is true because, by the first sentefick in
the proot of theorem 5, the first possibility in lemma ! von(l adiets

the hy pothcsos that A < 0. £\
Ny
PROBLEMS s

Compute the diseriminant for each of the follm;'in}g equations and char-
acterize its roots. ¥

Y 72
1% — bz + 8r — 4 = 0. 2,444 4z — 15r — 18 = 0.
325+ 2% —br —6 =0, A P+t — 6 =0
.38+ 8 +Tr+2=10 NB 2t —4 =0
7. mf‘+x2—3:c-l—9=0. ABNTB 2P 11 £ 122 49 = 0.
9.+ 2 + 12y — 40 = 0. N 1002 6 12y + 8 =0
1 #2248 47 =0 N\ 12, ¢ + 3% 4 24y — 28 = 0.
13. 32 4+ 5y? + 20y 4 64 = BN 14, % 4+ 742 + 16y + 12 = 0.
15.3;3—3;2—1@—20\:0 16, 35 4+ 3342 — Sy — 300 = 0.

5. Algebraic soh{hon of the quartic equation. The roots of an
equation of the fourth degree are obtained by solving auxiliary

eubie :-md guidratic equations. A notation for the general quartie
equatmn\g»

(3&)% Az* + B 4 C? 4+ Da k- E =0, A 0.
\A rea,l quartic equation is an equation of the form (38) whose

“coefficients are real numbers. A number # is a root of (38} if and
only if 7 is a root of the equation

(39) : x+=z +—a, +—x+£=
A A

Hence the general quartic equation may be given the notation

(40) bt et dr o=
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Now (40) is equivalent to the equation

B\? B\ 2
234+b$3+(§)x2=(§) a? —ex® —dr —e,

and hence to

B 2 z
(41) (:czﬁ—gx):(%*c) —dr —e.

It may be that the expression on the right of (41) is o perfect
square of a linear funetion ()f x. This ig true, for (mmplq ﬁthe
quartic (40) is the equation x* + 42® + 322 — 62 — 9 = e YThen
the equation (41) is (27 + 20)% = 2% + 6z + 9. rlhmoe»qu::l,tmn is
equivalent to {z? + 213% = (& + 3)%. Hence tho r(uit{s of the orig-
inal numerieal quartl( are all the roots of 22 - 23: =z -+ 3 and
all the roots of 22 + 2z = —(x + 3).

If the quadratic function on the right of :(AJ:}')‘ is the square of a
linear funetion, that is, if there ave constaht%:’ p and ¢ such that

LN\

b2 )
(42) (-4: - c) — dz = (;ox + 9%
then the roots of {40) are t-he’%bts of the two quadratic equations
»,\b
(43) A Sw = prt g,
\
44 \ x2+—x=—(p:r:—|-q)‘
a0

\s

Now a, @ﬁﬂmtlc funetion is the square of a linear function if and

only #ithe roots of the corresponding quadralic equation are equal

,mtmberb, and hence if and only if the diseriminant of the quad-
\(atlc function is zero.  Also, the discriminant of the guadratic

function which forms the leff-hand side of (42) is (—d)? —

4f(63/4) — cj{ —e}. Therefore there arc constanls p and g such

that (42} is true if and only if

(45) d? + e(d? — 4¢) = 0.

If (45) is true of the coeflicients of (40), then the roots of (40)
are the roots of the two quadratic equations (43) and (44),
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But, il (45) is not true of the coefficients of {40}, then the right-
hand side of (41) is not the square of a linear funelion of x, and
the preceding method of solving (41) is notl applicable.

One way of solving (41}, if (45) is not true, will now be cxplained.
If t is any number, then the roots of (41) are the same as the roots
of the equation which is obtained by adding [#* + (b/2)x]¢ 4-(£2/4)
to both sides of (41}, Therefore (41) is equivalent to

b \? i 2 N\
(46) (xz—f-éx) —I—(.x2+~2—):c)t-|-{—1

(o= r Gemaaf
= I-—c T 2 (-'l).}‘:

oA\

T

The left-hand side of (46) is the perfect square [a? + (b/2)z +
(/2. Also, by the fact which follows (4%\the qguadratic func-
tion on the right of (46) is the square of alinear function of = if
and only if the discriminant of thiz.§ufidratic function is zero.
Therefore, 4f ¢ is a particular numbegnguch that

N/

(47) (bz d)2 4(62 ’3":‘:' + z) (52 ) 0
2 "&:’7 c 1 — e} =,

~ 3

then the particular equ“atiuh {46) in which ¢ has this value will
have its right~ha-nq s@ic actually the square of & linear function
of z. That i, if ks, 4 value of y which satisfies the cquation

b ., 2 52 2
RIS RICRBIC

then h"g}c\ are numbers P and @, depending on ¢, such that the
pag?:i%t alJr equation (46) in which ¢ has this value becomes
&N b A
\”‘; (49) (x2 tort 5) = (Pz + Q>
Then the roots of (41) are the roots of the two equations

b ¢
(50) x2+§x+~2-=Px—!—Q,

b
(51) x2+§x+%= —(Pz + Q).
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If the operations in {48) are performed and ferms involving the
same powers of ¥ are combined, the resulling equation is

(52) ¥ — eyt + (bd — de)y — d% — bPe + 4dee = 0,

This equation is called the resolvent cubic equation of ihe quartic
(40)-

Logically there arc not two cases, depending on whether
d? + e(b® — 4¢) is or is not zero, because, if ¢ = 0 in (46), then
(41) is obtained. In practice the expression d® + e(b® — 4@ 15
first computed. If d® 4 e(b® — 4¢) is zero, then (42) 1&\wrltten
down at once, with no reference to (52). But if d? X ¢ — 4¢)
is not zero, then one root of (52) is found. Then equafmn (49) is
written down. In cach case the four roots of ’rhg{luurtw cuyunation
are the roots of two quadratic equations. "Lhé\fsllowing theorem
hag been proved. )

TurorEM 7. The rools of the guartas &amn xt -+ br® - cx? 4
d:z: + ¢ = 0 are found from a rool {\of the resaani cubic equation
-+ (bd — 4y — d° — bze»—i— fee = 0. There are numbers
P and Q such that the quadiotic function [(V*/4) — ¢+ tle® +
(/o) — dix + [(2/4) — o8 (Px + Q)2 Then the roots of the
quartic equation are thelfeots of the two quadratic equations (50)
and (51). e

~

In some of theyproblems the cquation has the form (40) with
integral coefﬁclentq Therefore the resolvent cubie equation has
integral queflicients. The following illustration shows how to de-
termi ('"é}ﬁv mtoglal root which the cubie mav have. The reszcl-
vent{tu ic of 22 — 822+ 1 =0isy* + 3y —4y —12=0. If
% 1,3 an integer which satisfics this cubic equation, then k° 4 3%

(D 4k = 12, Therefore k(k* 4 3k —4) = 12. This shows that &

N\Uis a factor of 12. 1f one of the integers in the list &1, £2, %3,

44, 6, £12 satisfies the cubie, it is used as £ If cach integer

in the list does not satisfy the cubic, then the cubie has no integral

root, and a non-integral root is used as 4. Similarly, an integral

root of (52) is a factor of the constant term of (52). If one of the

factors of the constant term of (52) satisfies (52), it is used as £

If cach of these factors does not satisfy (52), then (52) has no
integral root and a non-integral root of (52) is used as i.
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PFROBLEMS

Solve the following quartic equations by the method of thearem T,

Lzt =222+ 82 —3 =0,
2. 2t — 6t 4+ 8 ~3 =0,
. -2 +32 -2 =0.
4, 20—~ 32 — 10z — 6 = 0.
B.at —Bx — 6z — 5 =0.
6. 2t — T2 410z —4 =0,
7
8
9

Lot f Bz 44 =0 O
atdbr—6 =0 A\ ¢
cat LB —2 =0, R\,
10. o* — 652 + 62 +3 =0, Q
1. x* — 82 — 152 — 6 = 0,
12.2° =2 + 22+ 2 = 0. AN 3
13, 2% — 102 + 9 — 2 = 0 ™
14, 2t — 1227 - 32 -2 =,
16, =* — 332% — 6z +-2 =0, \
16, #* — 1422 + 82 + 6 = 0, x'\\"
17 42® + 403 4 1622 £ 8 = 0. Qs

18. 122 + 240 + 3227 4+ 122 + 3 = O )
19. 32 —3® + 42 — 3z +3=0. . \J)
20 2 + 3 £ 422 1 = @, R\

L g
ad

6. Discriminant of the quq;f);é“equation. If «; and =z, are the
roots of (50), and 23 and.g, the roots of (51), then zy, x4, wy, x4
are the roots of (40). Now it is proved in clementary algebra
that, if x; and =, a,Q\ibhé roots of (60, and henee of

0N b t
o .7
(53) :‘«’\3} +(§—P)-’S+(§“Q)=U,
then 2.\l

54 12\, b t

B (G- P)a (5 - Q) = (& ~2)(z ~ z).
M@Qﬁ,ﬁﬂh’, if ; and x4 are the roots of (51), and henece of

{55) x2+(§+P)x+(§+Q)=o,

then
5 b ¢
(56) 2® + (é + P)a: + (é- + Q) = (@ — az)(z — zo).

Equation (49) can be written in the form [2 4+ (b/2)x + (/D
~(Pr+@)7°=0. Similarly (46) can be written in the form
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flz} = 0. Therefore, for the particular { used in (493, flz) is iden-
tically equal to [ 4 (b/2)x + (/20 — (P + Q)% Also, by
the way in which (48) was obtained from (40),

(57 b 4 ba® 4 e Fdr e = Jx).

Therefore ,

b 02
(58) a;4+bx3+c:c2—i-d:c+ez(a:2+£:t+§) — {(Pz + Q2

The function on the right-hand side of (58) is the product of thie, >
function on the left-hand side of (54) and that on the left-Hand
side of (56). Therefore o\

(59) @ +ba® 4 ea® +de + e

= (z — z)(@ — 22) () (& — 29),
The expanded form of the product on the tight-hand side of
(59 is #* — (m + zp s £ Tt + Jh -k @y g+
Toty -+ tafy + Tama)e’ — (212223 + T1Zapd F ikaTe + 292370)7 +
miagwars. Jlence, by equating the copfficients of like powers of z,
the following relations are oblaineds

_b=x1+x2+x3—t;vt,,,’

Tixg 4 Ty PND1ze + 2oy + FaTy 1 Taly,

(60)

= @1TpTs FREIT2Ls T D1XaPs T FaRaTa,
&= 3513{2}3}4-

In the follm«zir’l;g”fiiscussion the particular functions @iy + rz2s,
g + 1:214,,\.@&:4 + oy of the roots zy, #a, 73, x4 of the quartic
occur froquéntly. They will therefore be designated by 2, 22, 25
'l‘hus,\@ﬁéﬁnititm,

N 21 = T1Tg + Tyl
o
01 2y = 21T3 T TaTyq,

\
Now, if these three equations are added and the second cquation
in {60) is used, it is found that
(62) 7 tetan=c

Another important relation between 23, 22, 23 will now be found.
Thus 22z + 2923 + 2223 = (wie + w304} {T1%3 + Tows) + (epez +

2y = XT1L4 + Tola.
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T3t4) (X174 F Toy) + (@123 + 2oxa) (€124 + Tovy) = {21 + 29 + 74
+ 24) (F1wata + 2129%s - TrTa2s -+ Xakars) — Hpaaryeq). Ilence,
by equations (80},

(63) 2122 + 129 + Enlq = bd — 4e,
Similarly, it is verified that
(b-’l) .212223 = d2 -+ 8(b2 - 16)

On. the other hand, if the product (¥ — z;){y — 22)(y — 2.) Jsfoy-
panded, the result is 3® — () + 20 + 209" + (2120 F2 2+
Za2g)y — zioza. Ilence, by (62), (63), and (i34), \\\
y—a)ly —2)y —z) =y — e + (bd — 1e)y — d“’«‘—‘bge + e,
This equation and eguations (A1) therefore exhibih very impor-
tant relation between the roots of the qu:-u‘t-ic.'f;m) and the roots
of its regolvent cubic cquation (52). This reldfion is that the roots
of the resolvent cubic arc precisely tbe\\lnl.lllll'.lel‘s £ + 252y,
X%y + Doy, 2174 + a3 This completes the proof of the follow-
ing lemma. 2\

Lexa 2. If the rools of @f’:;ﬁ— b’ +ex? +drt+e=0 are
1y g, T3, ¥4, then the rools of JR vesolvent cubic equation 4 — ey
+ (0d — 49)y — d® — b%e e = 0 are the numbers w125 + 2574,
223 + ZTotq, 1124 + o

The dz‘scriminank{‘of the quartic equation (40) is defined by
(65) & =

(@1 — 2)PEY — @)1 — 2022y — 25)%(xs — 24)P{2g — x4)°

0\

By Iemgna 2 the roots ¥y, y9, 3 of the resolvent eubic are re-
l::l,t-ec.i\&b\thc Toots &y, ¥y, T3, 24 of the quartic by the equations
A Y1 = Txy + @gmy,
\\166) ¥2 = Tixy -+ xaw,

Y3 = Ty + Tp0s.

Thercfore 1 — ya = @iy -+ Tabg — L3 — %ol = (11 — 24) (T2
—#3). The other two of the equations

Y1 — Y2 = (01 — 2a){azy ~ 23),
(67) Y1 —ys = (@1~ )z — x4,

Yo —¥s = (T1 — 2p)(T5 — zy),
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are verified in the same way. Hence, by (65), § = (3, — »2)%(y1
— y2)%(y2 — w3)%. Again, the diseriminant of the resolvent cubic
(62) is (1 — yo)’{y1 — ya)2(y2 — ¥a)% since the leading coefficient
of this cubic is 1. Therefore the discriminant 5 of the quartic (40)
equals the discriminant of s resolvent cubic (52).

Comparison of the coeflicients of the cubie in theorem 4 and the
coefficients of (52) shows that @, b, ¢, d in theorem 4 are replaced
respectively by 1, —¢, bd — 4e, —d? — b% + 4ce in (52). There-
fore the diseriminant of (52) is obtained from the expression fog
the diseriminant in theorem 4 by these replacements.  Henee (%,

(68) 8= —4(bd — 4¢)® + A (bd — 4)? + 4P (—d® — b -:a'@ce)'
— 18¢(bd — 4e){—d% — b%e + 4ce) — 27(—~d° — bge ¥ 4ce)?,

Another method of obtaining (68) is to find thé’\'educed cubic
equation ¥* + CY + D = 0 for the resolvent wibic (52). Thus
by (5), with a, b, ¢, d replaced lespe(,tlvely%y i, —e¢, bd — 4e,

—d2 — tPe + 4ee, A\

¢
C=bd—de—=, O
37 4

©0) .'~' |
D b2 + “Soe + bed 26
B ¢ 3 o7’
in the reduced cubie f‘\z(oﬁ) By theorem 3, the discriminant of
this reduced cubigdequation is 4% — 27D". Since the coeffi-
cient of * in (52) “is 1, the diseriminant of the resclvent cubie
(52) equals tQa alacrlmlnant of its reduced cubic. Therefore

(70) \:';\" § = —4C% — 2717,
inw hiéfl the values of (' and D are given by {689). This completes
tha prt.’)of of the following theorem,

\ TauorsM 8. Lel 24, Ta, T3, T4 be the voots of the quarkic cquofion
2t + bt e +de e = 0. Then its discriminant § is, by defi-
nition, the function

(11 — 32)2(m — )21 — wa)? (w2 — m3)* (2 — %) (w5 — z0)”.
Also 6 i3 evaluated n terms of the coefficients of the gquartic by (70}
and (69). The discriminant 8 of the quartic (40) equals the dis-
eriminant of its resolvent cubic equation (52).
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Lemma 3. The four roots of a real quartic equation have one of the
Jollowing properties: (1) all the roots arc real numbers; (i3} two roots
are real numbers, and fwo roots are conjugaie complex numbers which
are not real; (%) the four roots are two pairs of conjugate complex
numbers which are not real. :

Proor. First it will bo proved that, if s and ¢ are roal nuymbers
such that ¢ 2 0 and s 4 4 is a root of (40), then s — & 5 o root,
of (40). Substitution of s + # in {40) yields an equation of e
form ¢; + ¢t = 0, in which ¢, and ¢ are real constants (lept_'rqliug
onb, e, d e st Substitution of 8 — £ in (10) yields t.-lu,z'g;(:l\fiution
€1 — ¢t = 0. By the definition of cquality of complax Yumbers,
each of these cquations is true if and only if ¢ =0, ahd ¢, = 0.
Again, using ¢ # 0 and the expressions for ¢1 and &4, it is verified
that (27 — 253 + &% + )2 + (b + 25)2 Ko 367 — £ + 2sb]
=a* +b2® +® - de +e. The roots of the equation formed
by equating the first factor to zero argt st and s — 4. The
roots of the equation formed by equatifg the second factor to zero
arc real numbers, or they are conjugate complex numbers which
arc not real. N\

ToeoreMm 9. There are af fecst two equal routs of a real quartic
equation if and only if tisgdiscriminant is zero. No fwo of the roots
are equal, and fweo roots.are veal while two roots are conjugate compley
numbers which are G0t real, if and only if the discriminant of the
equalion s negatipe, The four roots are real and unequal, or the four
roots are unequl tind form two pairs of conjugate complex numbers
which are m{lﬁreal, of and only of the discriminant af the equation
s positivesC

1’;{(}0}. By (65) at least two of the roots are equal if and only
iL.&="0. The equal roots may or may not be veal, This proves
\’“’b«l;m'ﬁrst sentence in theorem 9. One part of the last sentence of
theorem 9 states that the roots are real and unequal only if § > 0.
The meaning of this statoment ig precisely that, if all the roots
are real and unequal, then § > 0. This statement will now be
proved. Since x; and z; are real and unequal, (z; — 22)% > 0.
Similarly each square factor in (65) is positive. Hence & > 0.
Another part of the last sentence of theorem 9 states that, if (iil)
is true and no two roots are equal, then & > 0. This statement will
now be proved. By hypothesis there are real numbers « and
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such that o # (G and x; = « + vi. If the notation is chosen so that
z; Is the conjugate of z, then z; = 2 — #d.  Also, there are real
numbers s and ¢ such that ¢ = 0 and 3 = 5 + 4. Then z4 =
s —t., Now wy —zp = 20, and x3 — 24 = 264, Ilence (2, —
1) 2y — 3)® = 160%2 > 0. Again 2 —z3 = (u — &) + (v —
Di,and e — 24 = (u — 8) — (0 — )i. Henece (z; — z3){xs — z4)
=(u— 9%+ (v — )% Sinee x # 23 and =z, # x4, therefore
(w—3s)2>00r (@ —6H%>0 and (z; — 25)%(22 — 2% > 0. Sim-
ilarly it is proved that (x; — 24)*(zs — x3)2 > 0. Hence by (651>
it follows that & > 0. This completes the proof of the part gf\the
last senfence of theorem 9 which states that the four rools a&é"real
and unequal, or the four roots are unequal and form two pairs of
conjugale complex numbers which are not real, u]ﬁi?"if >0
The other part of the last sentence of theorem Q{'{&\ the converse
of the pari which hag just been proved. Thig\converse will he
proved later. ' O
One part of the second sentence of theeféin 9 states that, if no
two of the four roots are equal and ifﬁi]ﬁ}.\is true, then & < 0. If
the notation is chosen so that ; and s are the real roots, then
there arc real numbers s and Aluch that {0, x5 = s + &,
74 =8 — . Nowwys — 2218 rp&li’and not zero. Hence (21 — #2)?
> 0. Again a3 — 24 = 2ti. Hehee (x3 —24)® = —47 < 0. Again
o) —xg = (r; — &) — #dand = — a4 = (r1 — 8) + #.  Henee
(@, — za)(m; — 24} =‘(1?,1\— §)2 4. But 2 — sis real, and ¢ is
real and not zero, X Thercfore (2 — zg)%(z1 — 24)* > 0. Bimi-
larly it is proved that (s — x3)%(zs — 242 > 0. Tlence from (65)
it 15 true that, 5 x (). This completes the proof of that part of
the sccond ,g,&:pténce of thcorem 9 which states that two roots are
real an&\ﬁhéQual and the other fwo roots are conjugute complex
numbefswhich are not real only if & < 0.
"Llieh other part of the sccond sentence of theorem 9 is the con-
»«éfs\e.of the part which has just been proved. This converse will
Nuow be proved. It is given that § < 0. It is to be proved that
nao two of the roots are equal and that (ii) is true. By the first
sentence of theorem 9, which has already been proved, if two roots
are cqual, then & = 0 and there is a contradiction of the hypothesis
that & < (0. Therefore no two of the roots are equal. It will now
he proved that (ii) is true. This will be done by showing that
the hypothesis (i) and the hypothesis 8 < 0 yield a contradiction,
and that the hypothesis (iii) and the hypothesis 8 < 0 yicld a
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contradiction. Thus, by that part of the last sentence of theorem
9 whiceh has already been proved, if no two roots are equal and if
(1) is true, then & > 0 and there is a contradiction of the hypoth-
esis that § < 0. Bimilarly the hypothesis (i) and the hypothesis
8 < 0 yield a contradiction. It follows that, if § < 0, then {ii) Is
true. This completes the proof of the other part of the sceond
sentence of theorem 9.

The other part of the last sentence of theorem 9 is proved in an
analogous manner. This completes the proof of theorem 9. XN

The two cases in the last sentence of theorem 9 can lhe p,lm\rfl-c-
terized if new funetions of the coefficients are used. Thebje\ Tine-
tions are the Sturm funetions for the quartic equationy M chap-
ter 4 Sturm’s method will be discussed for an equatief,of arbitrary
degree. R4

Discriminants are discussed further in chapter 9. The works
listed as references at the end of this book contain additional in-
formation about cubic and quartic equatidns.

N\ 7
o N

PROBLEMS

Compute the diseriminant for cags}fr:éf the following equations, and ehar-
acterize its roots, ™l

c 2t 5 B — B —fN= 0,
. x:—f— 5z% — 72" — 200430 = 0,
. 92 — 1027 + 9reL W = (.
.x4+5x3+xz—i—}\—l =0.
. 12x4+24x3rl§32$2—|—12z +3=0
8ot — 33NM4? — 32 +3 =0,
a2t = 6h 4 Be? +4r — 12 = 0,
at + @i 2722 4 312 4 12 = 0.
.t +a? — 5 =0
A2 — -1 =0,
ea®+ 42 + 102% 4122 -9 = 0.
322t + 40 o+ 142 + 200 + 25 = 0.

o ) B

s



CHAPTER 3

GENERAL TITEOREMS ON ROOTS OF POLYNOMIAL
EQUATIONS

N\
1. Integral roots of polynomial equations whose coefficients : age
integers. Synthetic substitution. The equation N
¢y ot — 62 — 132% 4 2% — 28 =0

will now be used to illustrate an important method:’m\ the solution
of certain equations. The function of = whieh “constitutes the
left-hand side of (1) is called a polynomial, m}x of degrec 4. Let
f(x) designate this polynomial. Thus &~

@) F@) = ot — 6a? — 13932’4-’ 2% — 28,

It is to be noted ecspecially that*emh of the coefficients in f(z) is
an integer. It will now be e;splamed how to determine whether
there is any integer whichnis a root of (1). Indeed all integral
roots of (1) will be determ}ned There are infinitely many integers,
Therefore it is imp f&b}e to test each integer by substitution in
(1). In fact, no mteger should be tested in (1) until some pre-
liminary 1nf01m@t»1{)n is obtained as a guide to the selection of
integers to be\tested. Furthermore, the test should not be made
by direct sybstitution, beeause raising an integer to a power is
tedious '§§[‘hr test should be made by synthetic substitution, which
will beyéxplained later.

If\r ‘and s are integers, the statement that s ¢s a factor of r means

\(hat there is an integer ¢ such that r = &, It is also said that
8 divides r and that s is a divisor of .

Tt will now be proved that, if b is an integer which is a root of
(1), then & divides 28. This is the preliminary information to
which refercnee was just made. After this is proved, then the in-
tegers £1, £2, 4, &7, 314, 28 could be tested, The integer
3 would not be tested because, if 3 were a root of (1), then there
would be an integer ¢ such that 3¢ = 28, and hence a contradic-

43
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tion would be obtained. The hypothesis that b is & root of (1)
means that the number f(b), that is, the number

(3) b* — 65 — 13b% 4 2b — 28,

igindeed zero. Now, since b is an integer and since each cocfficient
in (3) is an integer, it is true that (3) is an integer. Hence
(4) BB — 6b% — 13b 4 2) = 28 ~
is a true relation between integers. Also the number % A {jbz
— 135 + 2 1s an integer. It will be designated by ¢ THen{4)
becomes >

O":
S

(5) hg = 28, A
m\\
Therefore b is a factor of 28. \%

Before synthetic substitution is cxplained theorem | will be
proved, so that later the type of argument&thich led to {8) may
be applied to the gencral equation ingstéétd of merely to the par-
ticular equation (1). The integers are/the numbers 0, £, +2,
+3, ++-. A polynomial in z of @géi‘ée 7 15 a funetion of 2 which
has a very speecial form. 1t isQa;s{fm of one or more terms. Fach
of these terms iy the product-of a cocfficient, which does not in-
volve # and does not depend on z, and a power of xz. The exponent
of this power of x must®g s positive integer or zero. The highest
power of & has the e%p\onent n, and the coefficient of this term is
not zero. Thus glghlynomial in x of degree n is an expression of
the form P \%

N
(6) NV ar” + e 4 gz F a,

in wh‘ie'h'}, Is a positive integer or zero, ao, - - -, a, are independent
of zwahd ay = 0 if # > 0. A real polynomial is » polynomial
Wh;osé coefficients are real numbers. It is to be noted especially
}‘hat a constant is a polynomial in x of degree zero. If y is inde-
pendent of x, then y2® 4 2yx -+ 33 is a polynomial in z of dogree 2.

TaEorEM 1. If f(z) is a polynomial in of posifive degree n,
whose coefficients are integers, and if b is an integer which is a root
of the equation f(z) = 0, then bis a factor of the consiand ferm in fiz).

Proor. The statement that b is a root of J(z) = 0 means that
J(b) =0, that is, that agh® 4 ayp** 4. .. + tp_ib + a2, = 0.
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Henee b(agh* ™ + "2 .. b g, |) = —q,. Now, if ¢ is de-

fined by g = —(at" ™ + ab" 2 .- 4 q,_y), then ¢ is an in-

teger such that bg = a,. This completes the proof of theorem 1.
It f(z) is the particular polynomial (2}, then

(7) J4) =1-4* — 6.4% — 13-42 4 2.4 — 93,

The computation of this integer f(4) will now be explained in
greater detail than is used in practice, to illustrate the reason why'™\,
the method is correct. Tater this computation will be greatly

abbreviated in a siraple fable. Thus & \J)
—2 =14 —6,
—21 = —2.4 — 13 = (1.4 — G)4 — 13 = 1‘43'\;:.6-42 13,
~82 = —21-4 42 = (1.4% — 6-4 — 13)-1\{2':

If

: {
1-4% — 6-4° — 1304 4 2,
—356 = —82.4 — 28 = (1-4% — 6427 13.4 4+ 2)4 — 28

= 1-4* p4% — 13.4% 4 2.4 — 28,

Therefore f(4) = —356. It to be noted especially that each
step eongiste of a mtdtipl'@ation by 4, followed by an addition or
subtraction, This p}'oiiaé,s is displayed in the table

1IN\ -6 —13 2 28 |4
O 4 -8 —84  —328
AN/
N1 -2 21 —8%2  —356

:"\.s.

The in'te'gu;'si is not a root of (1), since f{4) = 0.
Ifuthe process of computing f(—2) is exhibited similarly in de-

tzaﬂ,}t is found that f{ —2) = —20. The successive steps yield the
Wble
1 -6 -—-13 2 -28 |-2
-2 16 -6 8
1 -8 3 -4 -20

The integer —2 is not a root of (1), Similarly it is found that

J(—28) is not zero. Hence (1) has no integral root.
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FPROBLEMS

Find zll the integral roots of the following equutions,
122 — 22 —5x 46 =0

2 2+ 32— 6z — 8 =0

3.2t — 728 52 4 3l — 30 =0.

4 gt — 37 — 27z% — 135+ 42 = 0.

oo+ 3 — 22 62 —8 =0,

6. ' — 52+ 327 + 16z — 18 = O,

7ot 4+ 3% — 62 — 1z + 12 = 0. ~
8 o — 4?4 5x? — 22 — 12 = 0.

9, 2* — 22 — 132% 4+ 3%z — 24 = 0. O\
10, z* — Ox® + 322 4 202 — 24 = 0. e

1 2+ 3® — 22 172 — 5 =0 L ™

12. 2 — 3 — 42 492 —3 =0

18, 25 — 0 + 182% 4+ 1827 — 192 — 4 = (. e

14, &5 — dgt £ o8 4 1047 — 20c 4 24 = 0. N

15. * — 2¢% — 3922 + 8¢ 4 140 = 0. ’

16, % 4+ 8 — 1022 — 1222 4 240 = 0. ‘.\\.’

17. 6z — 472% 4+ 6322 4+ 200 — 12 = 0. &

18, 924 — 362° — 722 + 302 — 8 = 0. ‘\ .
19, 68 — 722 — 162 + 21z — 6 = 0. )
20, 152 4+ 23 4 4322 4 8r — 6 = Q.»."“

There are several simplificadions of this method of finding all
the integral roots of a polynimial cquation whose coeflicients are
integers. Before thesesfimplifications are explained, it will be
proved that the n?ethfq@ of synthetic substitution is valid for an
arbitrary polynomialM6) in which # > 0. The notation flz) will
designate this general polynomial. It is to be noted especially
that in this proof the coefficients in (6) are not necessarily integers.
Indecd the)goefficients may be any complex numbers. Also, in
this proéfithe number ¢ is a fixed but arbitrary complex number.

'I:hé\general rule for computation of f{c) by synthotic substitu-
i}iQn.‘i’vill now be explained. The numbers ao, @y, + -+, @, consti-

““tute the first row in a table. The numbers in the third row are
designated by ko, k1, -+, k,. Under a; in the first row koc i
written in the sccond row; under ag is written kye; - - - ; under ax
is written %, _je. Also kg = ag, and each of ky, »+ -, ky is the sum
of the two numbers standing above it. Thus the table for the
computation by gynthetic substitution ig

& @ 2 e gy an [i
koo ke eer Rpse Fon—y0

ky B ke oo kaa ke



SYNTHETIC SUBSTITUTION 47

and
kﬂ = Gy,
ky = a1 + koo,
ks = ag + kic,
® Co
by = ty + knat. N\

The rule states that the number k, which is obtained in this ma.m

ner is indeed f(e). O
This rule will now be proved by mathcmatical mducm;m. I’ll‘&t

it will be verified that the rule is correct if n = 1. ThusJ if'n = 1,

the table has the form .\
o @ |e .
k \
(etad ) xt \\J
ko 3 " '\ &

Also, by (8), ko = a9 and & = a, & k{fc Therefore k1 = a1 +
gope. On the other hand, since 7 é& AP it is true by (6) that f(z)
= agz + a1, Thercfore f{e) =agt + ay.  Therefore &y = f (c).
Therefore the rule is correct = 1.

LrymMa FOR THE IND on. I | ng is o value of n such that the
method of synzhet@c I{mt@on 15 valid for all polynomials of degree
g, then the method 'as valzd for all polynomials of degree no + 1.

Proor. Let‘}?(w) designate an arbitrary polynemial

) ¢ \4"10271104_1 + At -+ Ap + Anppr

of degree\ng 4+ 1. Then

f_\@)\ F(C) (Agc™ 4+ Age™ ™! oo Angre + Angde + Angtir
et g(z) designate the polynomial

(11 Agr™ 4 4™ -1 p g Az + Aay

Then

(12)  glo) = Ao™ + A"+t Angic F Ay

Henee, by (10), '

(13) F(e) = g(0) ¢ + Angia,
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The table of synthetie substitution for F(z) is

Ay A Az e A'nn 1 Art(, A1 |_C'_
koe ke et k?m—ilc kn =1 JFl--nulf'-
7 1 ko LR S Ky Fhyt

Also, by (11), the table of synthetic substitution for ¢{z) ix pre-
cisely this table with its last eclumn deleted. By hypothesis, the
method of synthetic substitution is valid for all polynomialgsof
degree ng. Also g(x) is & polynomia! of degree ay. Thereipréyby
the table of synthelic substitution for g(z), it is truc dhay L,
= g(e). Again, by the statement of the rule for s}fpd'i\(ztic stth-
stitution, 1t is true, in the table for F(z), that Agwh’ = f.c +
Auyy1. Therefore knyy1 = gle) ¢ + Ay, Heptéy'hy (13), it s
true that Fc) = k,41. This completes the p’rg\)of of the lemma
[or the induction. \

Since it has been verificd that the n}le\\fm- synthetic suhstitu-
tion 3s valid for polynomials of degree Nt is known by the lemma
that the rule is valid for polynomials i degrec 2. Then, by the
lemma, the rule i3 valid for pobr’wﬁni&ls of degree 3. Continua-
tion of this process shows thabeil'n is a positive inleger, then the
rule is valid for polynomials :b?'dtzgl‘ee 7.

It is to be noted espg_;e-iafl}' that there must he n 4+ 1 columns
in the table if the pal{\_momial has degree n. For example, the
polynomial z° —¢ xé 2?2 — 72 + 13 is written in the form
@® — 22" + 02® 3 3% — 7w 4+ 13. Then the six coefficients in the
first line of t}].g'mb]e are 1, —2, 0,1, —7, 13.

2. The fagtor theorem and the remainder theorem. Factored
form 0{'?.\‘polynomial. There is an important identity involving
the golimomial f(z), which can be writlen down from the table
shaiving the synthetic substitution for 7(c). This identity is the
~~\”Da'sis for & simplification in the process of finding all integral roots
‘of a polynomial equation with integral cocfficients. This identity
alzo leads to other theorems of importance in the solution of equa-
tions.

If f(x} is the particular polynomial (2} and ¢ = 1, this identity
may be obtained in the following way. When the indicated oper-
ations are performed, it is found that 2% — 6z — 1327 + 20 — 28
~ z*{(x — 1) reduces to —Bae® — 1322 + 2 — 28 If filz) is de-
fined by

(14) Jilz) = —52% — 132% + 25 — 98,
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then
(15) Jla) =2 — 1) + filx).

Again, fi(z) + 52%(z — 1) reduces to —1822 + 2z — 28. If fo(2)
is defined by

(16} fole) = —182% 4- 22 — 28,

then

(1n fil@) = =522 — 1) + fo(a). S8
Therefore by (15) ) \}
(18) fa@) =2 = 1) = 5P — 1) +fala). O
Again, fo(x) + 18z(z — 1) reduces to —16x — 28. Iffg(:cj 15 de-
fined by e )

(19) folz) = —160 — 28, N\

then fu(x) = ~18:r:(x — 1} + fi(x}), and \x\\ ’

{(20) = (@ — 527 — 182,)(53 & l)' + fa(x).

In the same way & "%

@) fu@) = —16ES D) — 44,

and | \{

(22) f@) = @ + Qfé’&— 18z — 16){zx ~ 1) — 44.

The polynomial «* 2 55° — 18z — 16 in (22) will be designated
by g(x) and theq@raber —44 by . It has been proved, if f(z) is
the polynomiql\'@) and ¢ = 1, that there iz a polynomial ¢(x) and
a number y guéh that

(23) M:g\ ) fle) = ¢lx)- (2 —¢) +

T hls“\s the important identity which wag mentioned at the begin-

4 o‘r this section,
There is a more simple method of obtaining ¢{zx) and ». The
table for the computation of f(1) by synthetic substitution is

1 -6 -13 2 -23 |1

1 -5 —18 16

1 -5 —-18 -—1l5 —#

The coefficients of g{x) appear in order as the entries in the last
line of the tahle, and the number r is the last entry in that line.
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TuporeM 2. If n is a positive integer, if f(x) is a polynomial in
z of degree n, and of ¢ is a constant, then there is ¢ polynomial ¢(z)
of degree n — 1, and a constant r, such that f{z) = (x — glx) + 1.
Also r = fc). Therefore f(z) = (x — o)g(x) + fle).

Proor. The theorem will be proved by mathematical induction.
If n =1, then f(z} is agz + a1. Thercfore g(z) = ay, and r =
ape + a3, Alsor = f(c). ~

LeMMA FOR THE INDUCTION. If ng s a value of n such thabthe
theorem s true for polynomials whose degrees are af mosﬁ\’ng,\tﬁen
1y + 1 i3 @ value of n for which the theorem 1s true, .\

Proor oF THE LEMMA. Tf F(z) is the polynomtal @), 2 poly-
nomial @(z) of degree ng, and a constant R, willhis, found for which

(24) F@) = @~ 9Q) £

If Fi(z) means the polynomial Agcx.’ff\-}—' Ao oA Apx +
Any 41, then Flz) = (2 — ¢)a™Ay -PNFY(z). If Fy{2) is constant,
then Q(z) = z™4,, B = Fy(2). Also; then F(c) = F)(c) and

(25) REP().

If Fi(x) iz not o constant, then the theorem is true for Fi(z) by
the hypothesis of theJethma. Therefore there is a polynomial
Q1(z) and a constafbll, such that Fi(z) = (z — )0y (x) + By
and  Fi(e) = Rpw “Then F(z) = (z — ¢)[z™4, + (2} + Ry,
Qfx) = z™A, P Rix), R=R,. Also F{c) = R,. Therefore
(25) is true, )

Verification if # = 1 and proof of the lemms for the induction
comp{@ﬁ ‘the proof of theorem 2.

Eé;(;h identity in theorem 2 is called the division algorithm for

,J{2) tnd ¢, although the only operations in the identities are multi-
\L‘)Hcation, addition, and subtraction. If z in the identity is re-
placed by any constant, an equation between numbers is obtained.
The polynomial ¢(z) is called the quotient, and r is called the re-
-mainder. Theorem 2 is called the remainder theorem.

The statement that a polynomial s(x) is a factor of a polynomial
!(2) means that there is a polynomial g(z) such that t(x) = g(a)s(x).
It is also said that s(z) is a divisor of () and that s(x) divides
t(x}. Theorem 3 about factors is & corollary of theorem 2 and is
called the factor theorem.
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TuronreM 3. If n is o positive infeger, if f(z) is o polynomial in
x of degree n, and if ¢ is a root of the equation f(x) = 0, then there
18 o polynomial ¢(x} of degree n — I such that f(z) = (z — c)g(x).
Thus x — e 18 a factor of f(x).

Proor. If cisaroot of f(z) = 0, then f(c) = 0, and the division
algorithm becomes f{z) = (z — ¢)g(z). This 15 the result in theo-
rem 3.

It will now be proved for the general polynomial (6) of positivess
degree that the coefficients in g(x) in the division algorithm arg
indeed the entries in the third line of the table for the computar
tion of f(c) by synthetic subsiitution. Let g(z) be given the Aota-
tion N

(26) q(w) = boa" ™! 4 b 2 -+ bagm J,mf?f?i';.
Then R v/
(27)  (ber" '+ b 2 4+ byow - 11@41) (@ —¢) +r

becomes precisely (6), after the mdxcated operations are pet-
formed. On the other hand, after these operatlons are performed,

R

(27) becomes &
(28) " boa" 4 (—cby + bl)x =1} + (—chy + bgla™" —2
,\+ (—6bp—z + bu—r)z + (—cbu1 + 7).

Therefore, by cquat})ﬁ; coefficients in (6) and (28), the numbers
bo, <+, bu_yp, 7 sa’u}bfy the equations by = ag, —¢bo + b1 = a1,

—ch + by = Gz, "ty ~cby—z + by_1 = 8a-1, —cla_y + T =y
Thesc (,quatlﬁns arc cquivalent to
.\’\\W' bD =y
| 3 in =a + b()c
AN

&\ by, =az+ bie

29)

by—1 = Qn—t + bu ot
r =@, + Db

Hence, by (8), bo = ko, b1 =k, == bat = kn—1. This com-
pletes the proof of the following theorem,
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TuroreM 4. If n is a positive integer, of f(x) o @ polynomial in
z of degree n, if ¢ ts ¢ constand, ©f ¢(x) s ¢ polynomial and r o con-
stant such that f(z) = (x — c)glx) + r, and if glx) has the nolalion
(26), then the numbers by, By, - -+, by 1, v are precisely the entries
in the last line of the table for the computalion of f{e) by synthetic
substihution.
PROBLIEMS

Tn eunch of the following problems, for ¢ and fGz) as stated, find ¢00) wdd ¥,
and write the division transformation identity. N o
L 2,58 — 3u 4 4z - 5. .'\".\
3,5 — 42? + Tz + 2. O
—3,x3+29:2+793 — 1. PN
=2, 2% -+ 857 — Tr + 1. p
Boa! — 38 4 2 2 — 1, W\
Tt —b -+ 1L \/
=232 — 2 2 — 30 + 5. O
=3, 2 T — 2 22+ 5. 7,
L3 — 2% — 1, D\
10. 5, 2 — 328 + 2% — 2, e d
11, 2,25 2t — 20 — 3 — T2 — 6
12. 3, 2% — zf — 8% + 1322 — 230088,
13. —3,2% + 32t + 22 — 2 3P + 6.
14, —2,2% + 38z 4 55 + 62332 — 6.
16. 7,2% — &® 4 32> + o N
18. —7, 2% 4zt — 322 A2
17. —5, 825 4+ 2% — 4820 1,
18, 5, 22° + 8 b 4 3,

© @G mwN

It will now’biyéxplained how the {actor theorem simplifics the
process of fﬁjﬁl’ai’ng roots of an equation after one root has been
found. iK]ﬁE will be illustrated with the root —1 of

(30) (N 28 4 62° 4 Ui+ 145° + 22 — 355 — 28 = 0.
H\fﬁf,é' Fla) =2 + 62° + 112t + 1423 + 22 — 350 — 28
”'\?Jnitl ¢ = —1. Then, by the factor theorem,
(81) 2° 4 6¢° + 11zt + a® + 2 — 350 — 28
= (& + 1)(z® + 52 + 62% 4 822 — Tz — 28).
Now lef 7 be a root of (30) which is not —1. Sinee (31) is true

for a,ll. values of z, a true relation among numbers is obtained by
replacing ¢ in (31) by r. Thug

(32) ° +6° + 11r* + 144% + 2 — 35; — 28
= {r 4+ D)(® 4 5r* + 6% + &% — 7r — 28).

n = 8,

¥
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Since r is a root of (30), the number on the left-hand side of (32)
is indeed zevo.  Therefore

(r+ D{® 4 5 + 6% + 8% — 7r — 28) = 0.
Sincer # —1,7 + 10, Iience
(33) P bt e &t — 7 — 28 = 0.
Hence r i3 a root of the equation
(84) %+ Bt L 62% + 82 — 7z — 28 = 0.

This proves that a root of the particular equation f(z) = 0, \\Iﬁd\l
i different from the root —1, is indeed a root of the _equation
g(x) = 0. Since g{x) is of lower degree than f(z), the. &efumm a-
tion of the roots of f{z) = 0 should he continuecd b}\determmmg
the roots of g(z) = 0. Equation (34) is called thadepressed equa-
tion for f{z} = 0 determined by the root —1 c{t i) = 0. A dif-
ferent root of f(x) = ( would } rield a diffvrm‘i;}k'plewsed equation.

Now g(x) = 2* + bz* + 62° + 82 < m:\— 28. By synthetic
substitution it is found that ¢(— 4) LD Then, by the factor

theorem, o8
(35) 2% 4 Bat + 62 4 807 — T Yo

o =+t 422 — 7).
Hence m\

(36) % + 62° + ll:?‘K\f— 145° + 22 — 350 — 28
,\~’,~' = (z -+ D + 9E* + a® + 202 — ?).

Further festsghould be made with the function 2* + 2° + 227 —
It will K(m 3 e proved for the general polynomial (G} with » > 0
that thsib iz a depressed equation determined by a root ry of
flo) = E} It is to be noted especially that vy ig not necessarily an
int;ég;g‘r, and that, indeed, ¥, may not be real. This is also true of
cagh coctficient in f(z). Since ry is a root of f(z) = 0, by the factor

theorem there is a polynomial g,{z) of degree n — 1 such that

(37) @) = (z ~ @),
The depressed equation determined by the oot vy of flz) =0 is
gz} = 0.

Tt rq is a root of f{z) = 0, then 0 = f{re) = (ry — r)gn (o). If
also vy # ry, then qi(rs) = 0, and 7o is a root of ¢ () = 0. By
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the factor theorem applied to ¢;1(z) and ry there is a polynomial
g2(2) of degree n — 2 such that ¢;(x) = (x — r2)g2(z). Therefore
by substitution in (37) '

(38) J@) = @ — )@ — rog(x).

Tt is to be noted cspecially that r; = r1 by hypothesis. It is also
especially to be noted that the coefficient of 2"~ in ¢;(z) is pre-
cisely the coefficient @y of 2® in f(z), and similarly that Lhe coeffi-\
cient of z* 2 in go{x) is precisely the coefficient of «® 77 in g {(2)
and hence is @g. Continuation of this proeess shows that t]%e‘orem

5 is true. It can also be proved by induetion, \

TaeoREM 5. If n is a positive integer, if f(z) i$ 00 polynomial
of degree m, if k 1s an integer such that I £ k S and if i, -, T
are distinet roots of f(z) = 0, then there is a pdlynomial qi(x), of
degree n — k, whose leading coefficient s ﬂw‘ leading coefficient ag of

f(z}, such that ,

(39) f@} = (z —r)& — ?’2)’ . (x — g ().

THEOREM 6. Ifnisa posztwe mteger and if f(z) is a polynomzal
in x of degree n, then there ace dt most n distinet rools of the equasion

f(x) = 0. m\

Theorem 6 will be\}rwed by showing that if r, vy, -« -, rs are
n + 1 distinet rogts) then there is a contradiction. By theorem 5
@) = aglz =Y & — o). Smce r is a root of f{z) =0,
therefore {] \f('r) = ao{r — 1) - -+ (r — 7a). But by hypothesis
r# T, \ . Or 5% Tp. Alsoag #= 0 by the definition of a polynomial
of degtee' n. Thus the product on the right is not zero. This
congbii;ﬁtes a contradietion,
\ “\It will now be proved that, if f{x) has the notation (6), if g(x)
4s the notation bgx™ + by :z:“*1 dvoid bz + by, and if there
are n -+ 1 distinct numbers s;, «++, 8,3 such that f(s;) = gls1),
"y f(sn-i-l) = Q(Sn_]_].), then by = o, b = ay, by = @n. The
proof uses an auxiliary function ¢(x), which is, by definition,
J@z) — g(z}. Then

(40) ¢(@) = (a0 — bo)x" + (@ — by)a" 1 +- -

+ (@ny = bag)® + (@n — by)-
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Now ¢(s;1) =0, since ¢(x) = f(z) — g{z) and f(s;1) = g(sy). In
this way it is proved that the polynomial equation ¢(z) = 0 has
n 4 1 distinet roots sy, 8p, -+, 8,4y. If any one of the coefficients
in (40) were different from zero, there would be a contradietion of
theorem 6. Henece by = ag, by = a1, +++, bp = @n. This is what
iz meant by the statement that ihe polynomials are term-by-term
identical. The following theorem has thus been proved.

TuroreEM 7. If n is a positive integer, if f(x) and g(x} are two
polynomials of degrec n, and if 81, -+, Spq1 are n + 1 distinet num-
bers such that f(s1) = g{s1), <<+, flsnt1) = glsat1), then f(2) did
gz} are term-by-lerm identical. o\

\
N 3
2 Y

PROBLEMS

Find the integral roots of each of the following equations, I’ilﬁl\the factoriza-
tion of the polynomial which is determined by these roofs\Y
Lt A LT —42 =0 x~\\:
2t — T4® 4+ 162% — 28z 4+ 48 = 0. M
b 72t 2t — 63 — 90 = 0. A/
o — 27 — 1922 + 8z + 60 = 0. . \J
2t — 2% — Ga? + 10z +20 = 0. W
at — 3% — T 02 12 =0, %
ot - 555 — 3 £ 260 +8 =@y
o — 9 4 212 — 200 +,12°2 0.
ot — 22% — 1122 — 162 &0 = 0.
10, 2% 4 275 — 522 + 22, 494 = 0.
1. 74 432 — 622 -An—7 =0
12. 2* — 2* — 62? PEe + 5 =0.
13, 2% — 2 — 13D 182% + Bz — 36 = 0.
14, o5 — 4ot A%+ 25:% — 36 = 0.
15, 2f — B A7 — 6 - 20 + 12 = 0.
16. 1 -}\25}\’—‘ 3o’ - 85:7 + 4w + 12 = 0.

i B L e

3. Uppé:t:\and lower bounds for real roots of a real polynomial
equation. Somc preliminary information about the roots of a
Tesl “polynomial equation should be obtained before any test is
made to determine whether a particular number is a root. Thus,
theorem 1 is used if integral roots of a polynomial equation with
integral cocfficients are under consideration. Some theorems
which coneern all real roots of a polynomial equation with real
coefficients will now be proved.

One very simple fact of this nature is illustrated by the equatim}
28 4 822 4+ 10z + 12 = 0. If ¢ is any positive number, then #
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ig also positive. Also 8% > 0, 19¢ > 0, and 12 > (. By addition
of these incqualitios £ 4 8% 4 194 -1- 12 > 0. Therefore, if { > 0,
then 7 is not a root of the equation 2* +- 8% 4 10z + 12 = 0,
In general, if f{z) is a real polynomial (6) with » > O, if 4 > 0,
ap =0, -, a, =0, and if { iy 4 positive number, then ¢ is not a
root of the equation f{z) = 0. Also, if » is a real root of the equa-
fion f{z) = 0, then v = Q.

Another simple fact of this nature is illustrated by the cquation
—2% — 82 — 19z — 12 = 0. Now, o real number 7 v a root @M
this equation if and only iIf it is a root of +&* 4+ 827 -+ 10z, 412
= 0. In general, if f(x) is a resl polynomial (6) with = > @\ikd if
ag <0, a1 =20, -+, a0, £0, then —f(x) i3 a real pohnmm al of
degree n, such that each of its coefficients is positive’or kero. By
the preceding argument, it follows that, if there l‘\N]\ real root 7
of fx) = 0, thenr £ 0. This (,omp]{,t(‘w the predtof the following
theorem, Y,

THEOREM 8. If n ¢ a positive integey; }md flx) 25 a polynomial
in x of degree n, such that either each mrﬁneni i8 posifive or zero or
each cogfficient is negative or zero, the (x) = O has no positive rools.

A simple but important fack ~Shich is of use in the solution of
equations, will now be proy el As an 1llu~=t1 ation, it may be vori-
fied that, if ¢ is a root of bhe equation 2% — 2% — 52 4+ 6 = 0,
that is, lf £ — 2 — 5(B6 = 0, then —(—8)% — 2(—H2 + 5(—1)
+6=0 'Iherefor(\\ tis a rool of the cquation —y® — 2° + By
+ 6 = 0. This gglation in ¥ 1s also obtamed 1f z in the original
equation is repliecd by —y. Thus, if f(z) == 2® — 22 — 50 + 6
und g{y) = Ay“ — 2% + By + 6, then f{ —y) = (—y)® — 2(—y)?
— &{— —1— 6= g(y). In general, if z in the function f(:r) is e~
placed, Gy —y and if the result is designated by g(y), it ix said
‘rha{f{.’z) = gly) under the transformation © = —y. If { iz a value

s$ such that f(f) = 0, then g(—1) = 0. Therefore, if £ 18 a root

Jff () =0, then —f is a root of ¢{y) = 0. This comp]eten the
proof of the following theorem,

TrarorzM 9. If gly) designates the result of replacing x by —¥y
tn the function [(x), then the rools of gly) = O are the negatives of
the roots of f(z) = 0.

An illugtration of the use of theorem 9 in the solition of cqua-
tions is afforded by the cquation #° — 622 + 92 — 6 = 0. If x is
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replaced by —y, the equation —4® — 6y — 9y — 6 = 0 results.
Now, by theorem 8, there are no positive roots of this equation in
y. Therefore there are 1o negative roots of ¥ — 622 + 0x — 6
= 0. In general, let # be a positive integer and f{z) & polynomial
in @ of degree n, and let g{y) be the polynomial in y sueh that
flx} = gly) under the translormation z = —y. If each coefficiont
in g{y) i positive or zero, or I each coeflicient in g{y) is negative
or zero, then g(y) = 0 has no positive roots, by theorem 8. Hence
by theorem 9, f(z) = 0 has no negative roots. This completes the
proof of the following theorem. O\

TasoreMm 10. If n is o positive infeger, if [(x} is o pfilg}ﬂ.omiai
in z of degree n, if ¢ly) is the polynomial in y such that F&z) = ¢(y)
wunder the fransformation x = —y, and if each coe .c'%'ent in gly) ie
positive or zero, or if each coefficient in gly) 1s wtefafive or zero, then
flz) = 0 has no negative rools.

If f(x) satisfies the hypothesis of theo;m{i;s? then it iz known that
there are no positive roots of f{z) =) Tf f(z) does not satisfy
the hypothesis of theorem 8, then {(%’= 0 may or may not have
positive roots, Onc method of ob’c{a.ining information about what-
ever real roots it may have will how be explained.

Before theorcm 11 is proved, it will be used to obtain informa-
tion about the real rootséoF
(41) {:@Jr 11z — 2 — 24 = 0.

For this equatioh. # = 3 and ap = 8. The texms which have

negative coefficients involve 2! and 2¥, The greater of these ex-

pohents ishBy definition A is the greatost exponent of the powers

of x hﬂﬁhg negative cocfficients. Hence h =1 and n — h = 2.

Finallyy the absolute values of all the negative cocfficients are 2

andi®4. The greater of these is designated by G; hence & = 24.
\R;} the theorem, if r is a positive rool of (11), then r <1+
NPV G ey, Hence r < 1 + V253 = 1+ 2V2. Now 2¢/2
< 3. Hence r < 4. If this result of theorem 11 about positive
Toots of 3z% & 1122 — 2z — 24 = & is combined with the result of
theorcm 1 about integral roots of this equation, the process of
finding the positive integral roots of this equation is greatly sim-
plified. Thus, by theorem 1, the only possible positive integral
roots are 1, 2, 3, 4, 6, 8, 12, 24. By theorems 1 and 11 the only
possible positive integral roots are 1, 2, 3.
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Theorem 11 will now be used to obtain information shout what-
ever negative roots equation (41) may huave. By theorcm 9 the
negutive roots of (41) give the positive roots of —34* + 1152 + 2y
—24 =0, that Is, of 33® — 119 — 2y + 24 = 0. Ilere n = 3,
o =3, h =2, ¢ =11. By theorem 11 a positive root of this
equation in y is less than 1+ ~V/11/3 = 1 + (11/3) — 14/3.
Ience, if ¢ iy a negative root of (41), then ¢t > —11/3. If this
result of theorem 11 about negative roots is combined with the
result of theorem 1 about integral roots, it is found that the boly
possible negalive integral roots are —1, —2, —3, —4. oI\

Before theorem 11 is proved, a siraplification of notat{on will be
explained. This was illustrated by the equations iué't; preceding
theorem 8. Now the general polynomial equatiofN() = 0 and
—g(x) = 0 have the same roots, In one of the}e\ equations the
coefficient of the term which involves the latsest exponent of « is
positive, whereas in the other equation thisbcﬁeﬂicient is negutive.
Whichever of these equations has t-higﬁeé‘fﬁcient positive can be
used in finding the roots. Thereforehe notation may he assigned
so that ol ¢

42y flx) = apx™ + 01&""—1‘?5'""—!- Gn12 + Gn, @ > 0.

THEOREM 11. Let f(z), dés;fgna-tc the polynomial agr™ + 12!
Tt + an, n@bhich n is positive and the cocflicients are
real numbers. Let a@bé positive and af least one of the cocfficients
@1, vy Oy be negative, Define b as the greatest exponent of all the
powers of x whiehAave negative coefficients, Define G as the greatest
of the absol{té Values of all the coefficients which are negative. If r
. 7N n—h ——

s @ posytuerool of f(z) = 0, then r < 1 + \/G/ag.

'Ith.ié%eorem will be proved by showing that, if s is any posi-
R\ —hy—— .

JJavenumber such that s = 1 + " \/G/ ag, then f(s) > 0, and s is

ot aroot of f(z) = 0. It will follow that, if » is a positive pumber

such that f() = 0, then r < 1 + ﬂ_\‘T;/G/a;.

The term in f(2) which involves z” is the term PR T (D
possible that h = 0, that is, that a,_e* is in fact a,. Again, it
is possible that A = n — 1, that is, that the torm a7 iy in {act
the term a, 2", Nevertheless, f(z) is writter in the form

(43) f@@) = aox® ++ 4 ap_p_yzt
F tnoit® iy L gz 4
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with the understanding that these possibilities are not excluded
by the notation. The right-hand side may terminate with the

term a,_xx", or there may be no terms between age® and @, _nz”

It will now be proved that, if s = 1 4 n_\h/ é/?u, then
(44) aps ot U p 18T 2 g8

If A = n — 1, then the left-hand side of (44) means merely ggs”.
by the preceding understanding regarding the notation (43). Alsg
aps® = aps”. Therefore ays" = aps”. Therefore {(44) is true NG
= n — 1. The proof that (44) is true il i < n — 1 uses the@icts
that a; =0, - -+, @n_r_1 = 0, which are implied by the deﬁmtlon
of hand b < n — 1, and thc fact that ¢ > 0, which 13.1mp11ed by

the hypothesis that s = 1 4+ \/Gﬂzg Thus @ 279" and s > 0
imply that a;s" ' = 0. Similarly aps® 2 = W™, @np8"™
= 0. If these inequalities and the equality agg\= a¢s" are added,
the result is (44). By the definitions of ¥ s}ld (7, it iz true that
s = G and @,_p = —G. Hengcer &x},_hs"‘ = —@s* If thig
inequality is added to (44}, the result' 1% the inequality

(45) dos™ ++ - G 1.53‘*'1 + oS = ags® — Gs™.

1t will now be proved that ji the left-hand side of (45) contains
all the terms of f(s), thafNs, if 4 = 0, then f{s) > 0. H A =0,
then (45) hecomes ’i*,\

(46) \ 7(s) = aps™ — G

Now, by the® }}ypo’rheﬂs that & = 1 + \/(;/ao, it follows that
fg — 1)” = &/ag But s > s — 1 > 0. Hence ags™ > apls — 1)*
> (3. ‘Hence ags™ — ¢ > 0. Heneeit follows by (46) that f(s) > 0.
If m'}mm-s to prove that f(s) > 0 if the left-hand side of {45)
doeg Tlot contain all the terms of f(s), that is, if & > 0. If ¢ is the
ﬁubscnpt of the cocfficient of & term which is in f{s) but which
\dOGb not sppear in the left-hand side of (45), then n — A < i 5
There are 1wo possibilities: either a; = 0, or ¢; < 0. If ¢, = @,
then a; > —@, since —@ i3 negative. ’lhen as” Ttz -G
The incquality as" " = —Gs" will now be proved if a; <0.

Thug, by the definition of G, 0 < —a; = (. THence —a;s" "
< Gs" . Henee ;" = —Gs® % Thus it has been proved that

IV IlA

A7) gtz —GPT, s s 2 G 0 2 —@.



60 ROOTS OF POLYNOMIAL LQUATIONS

If these inequalities are added to the incquality (45), then the
result is the inequality

A h—
(48) aﬂsn + e + aﬂ—?¢—13h+1 + gy pS + au—h—[-lsa ! + et

t st an Zoa” — 0" — G8T — (s — ¢
Hence, by {43), it follows that
(49) &) 2 aps® — G{s" + & o g 1.

N
Now it is known that ¢"™ — 1 = (s — I)(s* 4 ! e s
-+ 1}. Since s > 1, it follows that s — 1 £ 0 and hence Ll\lﬁ\

G(sh-{-]_ _ ]) ”"} D
(50) PN L S
s — 1 \\

Also, if the right-Land side of (50) is expressod as single fraction,
it becomes {aes™(s — 1) — G(s"T! — /(s = 3. This expression

is equal to {&M[aw s - 1) — @I — D+ GA s — 1.
Since @ > 0and s — 1 > 0, it is true thab G/ (s — 1) > 0. Thepe-
fore, by (503,  \D
FATE, RS
_ T aps™ 8 3 s — 1) — @)
(51) foy > "2 PTG
wes—1
Now s>8—1. Hefee s+ 1 > (s — AL Henee

aps” s — 1) > agg@ﬁ“% ** and therefore gy~ s — 1)
— G > ay(s — 1" %G Hence a1 s — 1) — 2)/0s
-1 > s”*’"‘l[ao(ﬁ ST - Gl — 1) FHenee, hy (A1), it is
true that )7
a\.J A1 _ n—h __ v
(52) \\ fls) > q__[@s_l)_ _QJ
\\ g —1

Nowpby the hypothesis that s =14 ?h\h/éj'a_[,, it follows that
,{5\"% 1" = G/ay and hence that ap(s — 1" — G = 0. The

ther terms, s*7* and s — 1, on the right-hund side of (62) also
arc positive. Thercfore f(s) > 0. 'This completes the proof of
theorem 11,

If n is & positive integer and Flz) is a polynomial in z of degree n
whose coefficients are real numbers, then lhe statement that a real
number & is an upper bound for the real roots of f(z) = 0 means
that, if r is a real root of f(z) = 0, then r < ¢, If an cquation

satisfies the hypotheses of theorem 1 1, the number | - ﬂ_ﬁ‘\/a/:;t]
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is an upper bound for its real roots. The statement that a real
number b is a lower bound for the real roots of f(x) = 0 means that,
if rig a real root of f(x) = 0, then & < r.

If f(x) iz a real polynomial whose coefficients are not all of one
gign, and if ¢(y) is related fo f{x) as described in theorem 10, then
an upper bound ¢ for the positive roots of g(y) = 0 can be deter-
mined by theorem LL. The negative of ¢ i3 a lower bound for the
negative roots of f{z} = 0.

Q)
PROBLEMS O
Find an npper bound and a lower bound for the real roote of efch of the
Iollowing equations. ¢ s.f«‘
L2848+ 241 =0
%ot F 2t — 2~ Tt —2 =0 A\ N
. 4 Tt -t —hr -1 =10 v
4ot L2 322 450+ 2 =0 )
B.ab t 2t 42—+ —11 =0 .‘:\.\"
6. 25 £t 2 —al 32— 5 =0 NN
Tzt ba? — 2024+ 13z+1=0. o\
8 fat—2f4s—-2=0 o\ o
9 242> -5 —7=0. NP
10, 2% — o — 3z +1 =0 &N

1 0% — 2t 42— — To P
12, 8 4 52t — 2 4 227 —Als = 0.
13, 2% a2t — 2 38 s —2=0
14, —825 — 2 P o —2r+1 =10
15, 5 — 35" + 23 N 4 7x — 1 =0.
16, b — 5zt 428 % 27 + 30 — 2 =0
3 3
4, Rationa:l\é(;d\ﬁ of a polynomial equation whose coefficients are
intege s/\The statement that the infegers » and s are coprime
mean;ﬁ\?ﬂ;, if ¢ iv an integer which is a factor of r and a factor
of ghdbien s 1 or —1. Tt is also said that r and s are relatively
wgeime. A vational number i3 the quotient of two integers. The ra-
\t\ional number 4/8 equals the rational number 1/2, In general, the
notation ¢/d for a rational number may be chosen so that the
integers ¢ and d are coprime. It is said that c/d s in lowest terms
if ¢ and d arve coprime. An integer ¢ is a rational number since
¢ = ¢/1. If a rational number ¢/d is in lowest terms and i an
integer, thend = 1 or d = —1.
The proof of theorem 12 and the use of theorem 12 to obtain
information sbout the rationsal roots of a polynemial equalion
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with integral coefficients will now be illustrated. I[ ¢ and d are
coprime integers, and if ¢/d is a root of

(53) 9623 + 427 — 312 + 6 = 0,

then 96(c/d)® + 4(c/d)* — 3L(e/d) + 6 = 0. Henee 966% + 4¢2g
— 3led® + 64° = 0. This equation can be writlen in the form

(54) 96¢" = d(—4c® + 3led — 6d?)
and also in the form
{55) 60 = ¢(31d? — ded — OGY). O\

In (54) the number —4¢® + 3led — 6d° is an integer, sindek and
d are integers. Therefore (54) states that the intepersd Uivides
the integer 96¢®. By hypothesis the integer d has np Pyctor which
is greater than 1 in ecommon with ¢. Therefore o 1:\& factor of 96,
Again, by (55), ¢ 18 a factor of 6. For exam IENL/06 and —2/3
are possible rational roots of (53), and 1/5 isdiat s rational root.

TeEoREM 12. If f(z) s @ polynomigd‘ff?) whose coefficients are
indegers, if ¢ and d are relatively prime, hiegers, and if ¢/d is a rool
of f{x) = 0, then ¢ is a factor of thyj@éﬁ&laﬂ term a,, in f(z), and d
is a factor of the leading cocfficientag in f(z).

Proor. If f(x) is the polynomial (8), if the coeficients of (6)
are integers, and if ¢ andodate relatively prime integers such that

¢/d is a root of f(x) K@;‘t?hen

o\P : ¢ n~—1 o
h] é‘\:ﬂi\al (é) T+t (&) + a, =0,

and hene qﬁ&,’"—]— are” g 4. 4 Gn_1ed” ! + @, d” = 0. Hence
(56) ‘f;@c""“l + a1 o g dTY) = an(—d?),

and ()
(})7)} A+ apged”™? L. a1 = ay(—e).

Sinee ¢ and d are relatively prime integers, it follows from (56)
that ¢ is a factor of a,, and it follows from (67) that d is a factor
of ag.

_ TrroREM 13, If f(z) is a polynomial (8) whose coefficients are
wtegers, and if the loading coeflicient aq 4s 1, then a rational root of
flx) = 0 is an integer.
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Proor. Dy theorem 12 the integer 4 is a factor of 5. There-
fored = 1 ord = —1, and ¢/d is an integer.

Une method of determining all the rational roots of (53) would
be to test all the rational fractions which, by theorem 12, were
possible roots. The detalls are impracticable beeause there are go
many of these fractions and because synthetic substitution with
a fraction is intricate. On the other hand, the following method
is offoctive and involves few fractions. If

(58) y = 96z,

then (53) becomes 96(y,/96)% + 4(y/06)% — 31(y/96) + O ,=\"E]:,\In
thig equation fractions will be cleared by multiplication by (06)2,
The result is N

(59) P + 47 — 3190y + 6(96)7 = 0LY

A more gimple method of obtaining (59) fromiN(53) by (58) is to
multiply (53) by (96)% before {58) is 1138(1;:\\1‘11us, {63) is equiva-
lent to the cquation 96%% + 96%-42® <B1:96% + 6-96% = 0, and
hence to (96x)% + 4(962)2 — 96-31(96%)"+ 96%-6 = 0. Hence by
{58) the equation (59) is abtainedad *

It will now be explained precisely how the new equation (59) is
used in finding the rational waots of (53). It was proved earlicr
that, if ¢/d is a rational r’oot'éf (53) and in lowest terms, then the
integer « divides 96. :'l‘{wrefore, by (58), the corresponding value
of y, being 96(c/d)% i wn integer. This integer is a root of (59),
beeause (53) becomed (59) under the transformation (58). There-
fore each rat'}o\ii:ﬂ root of (53) determines, by (58), an integral
root of (58}, FThe eonverse of this slatement will now be proved.
Thus, il g4dan integral root of (59), then, by (58), the correspond-
ing vahie'of x is s/906. This rational number is & root of (53) be-
causey[59) becomes (53} under the transformation (58). Therefore

...gbll‘:fational roots of (53) are obtained by finding all integral roots

\Gf"(ég) and using (68). Upper and lower bounds {or the real roots
of (59) would be found by theorem 1!, Then the divisors of the
constant term of (59) which are between these bounds are the only
possible integral roots of (59).

Tt frequently happens in practice that a smaller multiple of x is
cqually cffective and yields a new cquation with smaller coeffi-
cients. The method of finding the smallest multiple of = which is
effective will now be illustrated. The leading coefficicnt 96 in

Q!
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cquation (53) equals 2°-3. If (53) is multiplied by 2-3° the re-
sult iy

(60} 20.3%% 4+ 2.3%.42% — 2-3%-81x + 2-3%.6 = 0.

In this equation the leading term is (2%-3a)%. This suggests the
substitution z = 2%.3z. Then the seeond term would be (1/2)22.
The resulting equation could not be used because in the theorems
which have been proved there is the hypothesis that the eocffs
cients are integers.  This indicates that (60) should be muliiplie
by 22, The result iz O\
'\
(81) 20.33,3 4 28.3%2 — 2432310 + 24326 = 0, >

!

This can be rewritten in the form ) \\
(62) (23.30)% + (2%-32)% — 186(2%-3x) 8’0-]3' = {.
Now the substitution *\\

(63) Z = 23-3:1::‘{:’\

leads to the equation .'f')::“ ”

(64) 2 2 — 380 + 861 = 0.

By {63), if ¢/d is a value@®f % which satisfics (53), then 24(c/d) is
the corresponding valie of z and sutisfies {64). By theorem 13
each rational rootyof\(B4) is an integer. Therefore cach rational
root of (53) (‘1313&1111111(35, by (63), an integral root of (G4). Con-
versely, each miegral root of (64) determines, by (63), a rational
root of (53)./7Hence all the rational roots of (53) are obtained from
the inteftdlroots of (64) by division by 24.

Thodotegral roots of (64) will now be found, By theorem 11,
the-bumber 15 is an upper bound to the roots of (64). Also, the
Ebiml;a-nt term 864 has the factorization 2°.3%. Hence, by the-

XJrum 1, it there arc any positive integral roots of (64), they are in
the list 1, 2, 3, 4, 6, 8, 8, 12. Again, by theorem 11, the number
—865 iz a lower bound to the roots of (84), Hence, by theorem 1,
if there are any negative integral roots of (64), they are in the list
which is formed by —1, —2, —4, —8, —16, —32 and the multi-
ples of these six negative intogers by 3, by 9, and by 27. Hence
the complete Hst of possible integral roots of {G4) contains thirty-
two cntrieg.



RATIONAL ROOTS OF POLYNOAMIAL EQUATIONS 5

A method will now be explained by which it can he proved,
more easily than by synthetic substitution, that many of these
possible roots are not roots, If the function 25 + 22 — 186z + 8id
is designated by h(z), then A(3) = 342. Thus 3 is not a root of
(64). Now 342 = 2.3%2.19. The fact that there are 5o few prime
numbers which divide (3} means that 342 is s very useful value
of h(2) in the following process. First, if 1 is an integer which is
a root of {64), then by theorem 3 there is & polynomial g(2) such
that h{z) = (z — k)g(2). Also, by the method of proof of thedwdm
2, it is true that the coefficients of ¢(2) are infegers, since the)enet-
ficients of h(z) are integers und since £ is an integer. I s re-
placed by 3, the identity yields the true relation A (3) = {3 — k(3
between integers.  This equation states that the) Jntéger 3 — k&
divides the integer 342, since ¢(3) is an integer,. \l‘hus it has been
proved that, if & is an integer which is o robtNOF (64), then 3 — £
divides 2- 32 19. This statement 1mplles that, if 3 — & does not
divide 2-3%-19, then k is nof a root of (6‘4} This fact will now be
used to prove that many of the thislyetwo possible integral roots
of {64) are not roots. The results, will be tabulated. The third
line of the table has the entr} N o’ i 3 — & does not divide
2.3%.19,

E 1 2 4 A6°8 98 12 -1 —2 —4 -8
1

3—k 2 -1{~8 —5 -6 -9 4 5 7 1
¢ J No Ne No No No
& ™
k —16 32 —3 -6 —12 24 —48 —98% —9 —1R
33—k 194 \/35 6 9 15 27 51 99 12 21
,"\ ) No No No No No No Ko
5 —?Ei\ —72 —144 —2H8 —27 —54 —108 216 —432 —RA4
3 — Ic\39 75 147 291 30 57 111 219 435 867
No  No No No No KNo No No No

) ;'\',]’ténce the only remaining possible integral roots of (64) are the
\ Jintegers 1, 2, 4, 6, 9, 12, —16, —3, —6, —54. Now h{4) = 200
= 2%.52, Thus 4 is not a root of (64) and a new table is con-

k 1 2 6 a 12 —-16 —3 —6 —hd
44—k 3 2 -2 -5 -8 20 T 10 58
No No No

structed. Tt shows that several of the possible integral rocts are
not roots. By synthetic substitution A{2} # 0, and A(6) = 0.
Also h(z) = (2 — 6)(Z* + 7z — 144) = (z — 6)(z — 9){z + 186).
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Therefore 6, 9, —16 are the roots of (64). By (63) the roots of
{63) arc 1/4, 3/8, —2/3.

It is to be noted that in thig process A(3) and h(4) were used
and that 3 and 4 were possible integral roots of {G1). H owever,
in this process h(f) may be used even if ¢ is not one of the possible
integral roots of (64). This fact is proved in the course of the
following general proof,

If f(x) is a.polynomial in # and & is a root of f(x) = 0, then there
is a polynomial g{z) such that f(x) = {(x — Bglx). 1f also & and
the cocfficients of f(z) are integers, then the coeflicients of‘.g(a:)
are integers, since the only operations in the identities arg mulh—
plieation, addition, and subtraction. This fact can alsey ho proved
hy induection. Now, if ¢ is any integer such that, j‘({) % 0, then
Ji = (t — k)glo), and the integer { — £ iz a hch&r Of the integer
J1)." Tt follows that, if f(z) is a polynomial inngdf positive degree,
whose cocfficients are integers, if ¢ is an m‘r P suuch that 706 = 0,
and if £ is an integer such that ¢ — % is th a fuctor of f{£), then &
is not a root of f(x) = 0. This ('ompletoﬂ; the proof of the lollow-
ing theorem.

TuroreMm 14. Let f(x) be a*}iﬁlg}nomial in x of positive degree.
Let the coefficients of f(z) be z?ttegers and & be an inieger such that
J@& = 0. If kis an integen such that t — k is not a faclor of §(8),
then k s not o roof of fteh= 0.

&

\ PROBLEMS

Find all the tt@m"l roots of each of the following equations.
. Gt - L?(c =~ 63z 4 8% — 24 = (.

. Bzt —-{3‘1:3 — 332 4 160 + 12 = 0.

. 20080 T2d — 4642 + ldr 412 = 0.

. 2l 3 222 — T14¥ — G6x 424 =,
St — 550 4 140? — 152 — 12 = 0.
120t — 5% + 2227 — 102 — 4 = 0.

92! — 562% + 5722 + 9%z — 24 = 0.

- Out — 312% — 4222 4 06r — 32 = 0,
.x“—Zx — 22% 4+ 13x — 12 = 0.

.x —8:1;“+11:c3+2x + 18¢ 436 = 0,
.o: + 5zt — 5a® 4 822 — — 24 — 36 =0,
Lpt— T 4 21? — 28 418 = 0.

Bz® - 1lxt b 2123 — 49,2 - 12:+8 =0,
.x“—Qx3+22:r2 46z + 12 = 0.

vzt — 6 1022 — 172 4+ 6 =0,
.ﬁx5+7a:4+23:1:3+26x2—43:—820.

A
[y Mx \
MHC}CDW‘QG?/UI‘I#»“NH
P s

=
a2 = ]



MULTIPLE ROOTS 67

8. Multiple roots. An important method in the sclution of poly-
nomial cquations will now be illustrated by means of the equation

(65) a* + 523 + 522 + 32 + 18 = 0.

By theorem 13 the rational roots of (65) are indeed integers. By
theorem 8 there are no positive roots of (65). By theorem 9 the
negative roots of (65) give the positive roots of y* — 5% + 52
— 3y + 18 = 0. By theorem 11, the number 6 is an upper boung
to the pusitive roots of this equation, Hencoe —6 is a lower boumd
to the roots of (65). Henee —1, —2, —3 arc the only pdgiibile
rational roots of (65). By synthetie substitution it is formad that
— I and —2 are not roots of (65) and that —3 is a ;‘u’gf of (85).
Also e \

(66) 2% + fz® + 52 + 3z + 18 = (2 -+ 3) @22 — 2 + 6).

Tt is not correct to conclude that there aresdrational roots of the

depressed equation "S

$

(67) 28+ 2 — 5 A &=o0.

The fact is that —3 is a root of :{(’67"), and that =® + 222 — 2 + 6
=& +3)E—2z+2). I‘Igri,cé

(68) z* 4 52® + 5a? j—(ﬁx +18 = (z +3)%G* — z + 2).

Now —3 is not a fedt of 22 — = +2=10. Hence z + 3 is not a
factor of 2 — o™ 2. Henee, by (68), (& 4+ 3)% is a factor of
xt 4 Ba® 4 584 3z + 18, but (x + 3)3 is not a factor. This is
the meanirggiof the statement that —3 is a reot of multiplicity 2
of ot 4 Fafd. By? 4 3z + 18 = 0,

In gt%e"ral, if f{z) iz the polynomial {8) in which the cocflicients

are,piunplex numbers, and il 7 is a root of f{z) = 0, then by theo-
...I'P.l:ﬁ 3 there is a polynomial ¢(x) such that f(z) = (z — r)g(x).
\'Pherefore there is a positive integer m such that (x — #)™ is a
factor of f{z) and (& — 7)™ is not a factor of f(z). This integer
m I8, by definition, the multiplicity of the rool r of the equation
fx) = 0. '

If v; and r, are distinet roots of f{z) = 0, then a factorization
of f(x) is given in theorem 5. In this factorization the multi-
plicities of r; and r, for f{z) = 0 do not appear. A factorization
in which the multiplicity m; of m and the multiplicity m, of rp
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appear will now be explained. By the delinition of m; there ig a
polynomial g (x) such that

{(69) flz) = (& — r)™q ().

Hence f(ra}) = (rs — r}™gi(rg), and then 0 = (ry — riy™gy (ra).
Also r) # ry by hypothesis. Therefore ry is a root of ¢ (x) =0,
and there is a positive integer which is the multiplicity of », for
the equation ¢;(x) = 0. 1If this multiplicity is designated by ny,
then, by the definition, there is a polynomial g.(z) such tHab
afz) = (& — ro)ga(x) and that x — ry 13 not o fuctor oldgg(z).
Hence, by (69), f(z) = (& — 7)™ (x — 7o) s (). If (x m‘?'}\)’h‘fgg("c)
is designated by gu(x), then f(») = (& — ro)™m (). G\

It will now be proved that = — 5 does not disdded ¢4 (), by
showing that, il there were a polynomial g,(c)sfth that gu(z)
= (v — ry)gs(x), then there would be a cendwadiction.  Thus,
if the two expressions for gu(2) are egudted, the result is
(r — r)™ga(@) = (& — roqale). I 2z is@éplaced by the number
re, thiz identity gives the true 'lleii'i.thIl (rs — )™ ga(rs) =
(ra = r2)qa(r2) between numbers. « Hénce (ry — 71)"'ga(rs) = &
On the other hand, it will now ~b1§ *proved that rs — r, = 0 and
golry) = 0, and hence that (3'3~.'+f$~1)’“1qg(?'g) #= (0. This is the con-
tradiction that was mentioted. By hypothesis ry 5% r;. There-
fore rs — 11 = 0. AgatwIF golry) were zero, then rs woulkl be a
root of g2(x) = 0. Hefnde, by the factor theorem, it would be true
that z — ra iz a fact s of #2(z). But, by the definition of go(x), it
is known that 2 v, is not a factor of g2(z). Therefore galrs) 15
nol zero. W&/

It has begn proved that fa) = (& — 7)"gs(2) and that & — 72
docs n (divide g3(xz). This means that 7, is indeed the mulfi-
p]jcij,yaf ra for f{z) = 0. Ttis especially to be noted that n, was,
by.definition, the multiplicity of 7, for ¢,(z) = 0, und that the

“tandtiplicity of r; for f(x) = 0 was designated by ms. Thercfore fg
= my. 1t was also proved that f(z) = (z — )™ — r2)"ga(x).
Therefore, finally, it has been proved that, if #; and ry are dis-
tinet roots of f(z) = 0, of multiplicitics m, and ms respectively,
then there is a polynomial ¢3(z) such that fla) = (@ — ry)™(z —
72)" s (),

In gencral, if k is an integer greater than 1, and if ry, 79, =+, 7%
are k distinet roots of f(z) = 0, then % = n, by theorem 6. If
My, Mg, -, wy are the multiplicities of ), #y, - - -, 1y vespectively
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for f(z) = 0, then it can be proved by induction that my - g
+---bmp = n oand there is a polynomial gn(x) such that 7(x)
=@ =)@ =)™ (z— n)™gz).  In (89) the leading
coefficient of g;(x) is the leading coefficient ag of f(2). In general,
the leading coefficient of gu(x) ix ag. Hence, ¥ mq 4- ey +- - -
+ my = n, then gi(z) is ag. This completes the proof of the fol-
lowing theorem. :

Tauores 15, If f() 4s the polynomial aga® ++ -+ an_iz + Gy
if 1o, o vy vy are distinet rools of f(z) = 0, and if the mudtiplicslies
of v1, «++, 1 for flz) = 0 are my, -+, mg respectively, then'my
+eedmy = n, and there 1s a polynemicl Q(x) such{thet” flx)
=& —r)™ e (@ — )™ Q(x).  The leading weﬁmmt of Qir)
is g, If mg Foo o4 mp = n, then Q(x) is the mnsiaﬂt ag.

It i3 to be noted especially that, if 7 i & 1ed€ &multlplamty i
for f{x) = 0, then, by (69), the equation f(a\== 0 cun be written
ag (@ — n™g{x) = 0, and 7, 15 counted”as m; equal roots.
Similarly, if #; and re are distinet roops\xof f(x) = 0, of multiplici-
ties m; and my respectively, then(f{¥) = 0 can be written as
{x — ri)™ (@ — rgf™ga(z) = 0, andyn is counted as my equal roots
and 7y ag m; equal roots, In g{‘n(' ral, each number v which 4s a root
of fix) =0 has a mulizplwai*y yn, and v 15 counted as m equal roofs,
If m > 1, then r is calleda multiple root of f{x) = 0. 1l m =1,
then 7 is ('allerl a amplé\root of flz} = 0. Therefore the following
theorem is 1mpllpekby theorem 15.

Traeonem 6L S a root of multiplicity m is counted as m roots,
then a poiya(mna{ equation of degree n has af most n rools.

Tt w 1ll~11(}\ be explained how to determine whether s polynomial
(‘quatoﬁn“haq any multiple roots. If it has a multiple root, a new
equa.tmn will be found, which is of lower degree than the original
equatlon and which has the same roots as the original equation
put no multiple roots.

Tet f{x) be the general polynomial (6), and let f'(x) be its first
derivative. Let r be a root of f{z) = 0, and let m he its multi-
plicity. It will now be proved that, if m > 1, then r is a root of
F(x) = 0 of multiplicity m — 1, but that, if m = 1, then r is not
a root of f/(x) = 0. DBy the definition of the multiplicity of a root
of an equation, there is a polynomial g(x) such that f(z) =
(x — r)"g(z) and z — = is not a factor of g{z}. By the rule for dif-
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ferentiating a product, f'(z} = (x — "¢ (x) + m(x — " lg(z).
Henee f'{z) = (x — )™ {z — )¢ (x) + myla)]. Therefore
(x — ™1 is a factor of f'(z). It will now be proved that
(z — )™ is not a factor of f'(z). This will follow if it is proved
that z — r I8 not & factor of (@ — v)¢'(z) + my(x). This last
statcment will now be proved. If there is u polynomial £(2) such
that (x — ri(x) = (@ — r)¢'(x) + mq(r), then it s true that
(z — r)le{x) — ¢ )] = mg(z). Therefore + — r is a factor of
g(x). This contradicts the definition of ¢(x). Thus it has Hedn ®
proved that (¢ — 7)1 is a factor of f'(2) and (z — »™ i, fint a
factor of f'(). This completes the proof of the following E]!NZO‘I"’(}]TL

TazorkM 17. Let r be a root of multiplicity m of the “polynomial
equation f(z) = 0. If m > 1, then r is a root of '@V (=0 of multi-
plicity m — 1. If m = 1, then 7 is not a root of\{x) = 0.

By theorem 17 it is known that a mult-ixp{g,l-oot of flx) = 01s
a common root of f(x) = 0 and f/(x) = 04 B will now be proved
that, 1f s is a common root of f(z) =¥ahd /() = 0, and if my
is the multiplicity of s for f'(z} = Q.a;m} my the multiplicity of s
for f(x) = 0, then mg = my + 1., '}fdw either me > 1, or my = 1.
If mg is 1, it follows by the last’r&;éntencc in theorem 17 that s is
not a root of f'(x) = 0. 'ThifNk a contradiction of the hypothesis
that s is a root of f'(x) =<0 Hence my > 1. Then, by theorem
17, s is a root of f’(t\).,ﬁ 0 of multiplicity m; — 1. Henee my
=z — 1, Theref,@% mp =m; + 1. This completes the proof
of the following thesdrem.

A X
THEOREM.oKS-’ If s is @ common rool of f(z) = 0 and f'(x) = 0,
and ’ﬂf the mltzpkcaty Gf s for f’(..’?,') = is my, then the m'f,{u?.'ph:(}‘éﬂy
of s forf@) = Oismy + 7.

4 ~\' '3
e\ PROBLEMS
3

In cach of the following problems let S(x) mean the polynomial in the given

equation. Holve f'{z) = 0, and apply theorem 18 to determine any multiple
roots which f{z) = 0 hus,

L4+t —52+38 <0,
cxf — 322 —Gw — 5 =0,
¥ — Bz 12 — 8 = 0.
cad 0t 4270 4+ 27 = 0.
P2 -5z —6 =0,
254 60% — 2 — 30 =0,

PO eN
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T 28 4+ &% — 162 4+ 20 = 0.

8 % — 22> — 15: + 36 = 0.

9. z* — 104° + 362> — 54r 4 27 = 0.
10. z* + 32* — 6z® — 28z — 24 = 0.
11, 28 — 32 — 6z + 8 =0,

12, z* + 20 — 32 —dx + 4 =0

13, 2t —4x® — 222 12 29 =0,
14, % — Bz? — 83z — 27 = 0.

15, z% + B2 — 4hr L2 = 0.

16, 2 — 322~ 0z + 4 = 0.
N

It will now be cxplained how f'(z) is used to determine whether

f(z) = 0 has multiple roots and the multiplicities of any such I‘t}O\tS
If f(z) is a polynomial of positive degree, then there ig a. Tmique
polynomiul, which will be designated by g{z), with ‘r&le«follmw ing
three properties: (1) the leading coefficient of g(a.a) as'l; (2) glx)
is a factor of f(x) and a factor of f'(x); (3) it d(:g) is a factor of
f(x) and a factor of f'(x), then d(z) is a factondl g(x). This poly-
nomial g(z) is called the greatest common ‘di;&}'t)r of f(z} and f'(x).
There iz o common divisor of f(z) an}i T'(x) whose degree is
greater than the degree of g(x). \WV

A method of finding g(x) will naw be illustrated. If f(x) is the

polynomial RN
(70) &5+ 65 + 920 gt — 482? — 485 — 16,
then »s\

7)) = 6;5\\+ 302* +- 364° — 3622 — 90z — 48,

The largest m{eg(r which is a common factor of the cocfficients
of f(x) is H Mt will simplify further details if a new notation is
introd 1(;(*& Thus, if

(72§ ‘\ Fi() =25 + brt + 6a® — 6 — 16z — 8,

hén f (x) = 6F(z). The first step is to find a polynomial ¢ (),
and & polynomial r(zx) of degree lower than the degree of Fy(x),

such that
{73} fl&) = a@Fi) + rilz).

Thus it is verified that f(@) — eFi(z) = z° + 3z* — 6% — 3227
— 40z — 16. Hence fla) — xFi(z) — Fi(x) = —29: 12x

9602 — 24p — 8. Hence f{x) = (z + DF:(e) + (—22° — 12:3
- 2022 — 241 — 8), Therefore (73) holds with gl(:c-) =x+41
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and 7 (z) = —22* — 1223 — 2627 — 242 — 8. Since the coefhi-
cients of r{x) have the common factor 2, the notation Fy(x)
= --z! — 627 — 1327 — 122 — 4 is introduced. Then

(74) f@) = q@)F\(x) + 2F, ().

There is a more practical method of obtaining ¢;(x) and r(z).
Thus, if the usual process of long division is applied to divide f(z)
by Fi{z), the polynomials ¢ (z} and r((2) appear as quotient and\
remainder respectively.

A simplification of the process of long division will now be il
trated. Tt is reforred to as long division by delached cocffigients,
since it is a tabulation of the coefficients only in the uguéﬁ Trocess
of long division. Thus, the following tabulation i¥Xifflcient to
obtain the identity (73): \\

11 O
156 —6 —16 —8[1 6 o 127548 —48 —16
1 5 6 26 —16 -8

B.—6 —82 -40 -18
o9 6 —6 —i6 -8

S —2 12 -2 2t —s

The second step in the firncess of finding ¢(z) is the determina-
tion of a polynomial &(‘x)’, and a polynomial r(z) of degroe lower
than the degree of Ey(2), such that

(75) N0 = @R + o).

Thus, ¢z x)‘E —z + 1 and r(x) = —2® — bz® — 8¢ — 4. Tor
uniformityy the notation

) Fa@) = —2® — 52% — 8p — 4
%i;tmduced. Then
@7 Fi(2) = g2(2)F3(x) + F3(x).
The next step in the process is the determination of polynomials
gs(z) and r3(x), such that r5(x) is of degree Jower than the degree

of f3(x) and that

(78) Fy(x) = g()F5(z) + rgla).
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Thus, ga{r) =« + 1, and #4{z) = 0. Therefore (78) becomes in
fact

(79) Falx) = qa(a)Fy(x).
If (79) is substituted in (77), the identity
(80) Fri(z) = [go(@)gs(x) + 1]F5(2)

is obtained. Tf (80) and (79) arc substituted in (74),
(81) @) = {ga@g(x)ga(x) + 1] + 2g5(x)} Fy(z)

is obtained. Now the faetor go(z)ga(x} + 1 in (80) is a polyéc?ﬁ?ml
in . Hence Fyiz) is a factor of F1(z). Also, by (81), Fsz) is a
factor of flx). Bui f'(x) = 6F(z). Henee Fy(z) i ‘F\common
factor of f(z) and f'(z). '\\

Tt will now be proved that, if d(z) is any com#on factor of f(x)
and f’(x), then d(x) is a factor of Fs(z). Let there be polynomials
Q=) and ¢ (z) such that \ \

(82) flz) = Q@)d(x) and [ x) = Qi(z)d(x).
Since f'(x) = 6F{z), it follows t}lﬁt
{83) Fi(z) = —Q1 (x)d(x).

Also (1/6)Q: () is a polynomml in z, although its cocfficicnts may
not be integers. Heneg by substitution in (74}, there is obtained

the identity [Q(a:) \bj(z) (1/8)h(x)]d(x) = 2F2(x). Hence
(84} ’2(-17) = [FQ() — a1 (x))d(x).

Also (1/2)\@&) — (1/12)q1(z)@1{z) is a polynomial in z. Hence
(84) shas%g'that diz) is a factor of Fa(z). Now, if (83) and (84)
are sub\ltuted in (77), there is obtained the identity

(8“} 6Q1($) - Qz(ﬂf)[ Qfz) — WQL(Tr)Ql(ﬁf) jd(z) = Fa(x).

\Th( left-hand factor in (85) is a polynomial in z. Hence d{2) is a
factor of Fa(x). It has thus been proved that —#3(x} has the
properties (1), (2), (3), which, by delinition, characterize the great-
est common divisor g(z) of f(x) and f’(z). Hence, if f(x) is the
polynomial (70), then g(z) = 2° + b2® + 8z + 4.

By theorem 18, a root s of g{z) = ¢ of multiplicity m, is a rool.
of f{z) = 0 of multiplicity m, + 1. By theorem 17, a root » of

Q)
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Jlz) = 0 of multiplicity m is a root of g{x) = 0 of multiplicity
m—1,
Since g(x) is a factor of f{z), there is a polynomial Q(z) such that

(86) J@) = Qz)glz).

In the preceding illustration Q(z) = 2 + 2% — 4z — 1. By (86)
each root of Q(x) = 0is a root of f(x) = 0. 1t will now he proved
that each root of f{z) = 0 is a root of Q) = 0. In fuet, 1t will
be proved that, if  is a root of mudliplicity m of f(r) = 0, then 748 \
o simple root of Q(z) = 0. This will be done by proving first Cthat
& — r s a Tactor of Q(x} and next that (z — 7)? is not a fxedor-of
Q). A\
Now, by the hypothesis that = is a root of multiphictty m of
f@) =0, it follows that thero is a polynominl .J{:(;:.:‘) siich that
fx) = & — »™h(z) and 2 — 7 is not a [actorsof ()., Also, by
theorem 17, (x — )" is a eommon factor b fiz) and £z,
Hence (z — )™ is a factor of gix)y. It }(lknuu’ be proved that
(x — 7)™ is not a factor of gGe).  Thidgwill he dune by showing
that, if (x — 7)™ is a factor of glx), :Lllén”t.here is a contradietion.
Thus, if (x — v is a factor of g'(ai.),: ‘then, by the fact that g{=)
is a common factor of flz) and™ j”(a:), it follows that (x — n™
is a common factor of fle) and f'(z). Hence, by theorem 17,
(@ — )" is a factor of f)° This contradicts the definition of
m. SBinee (z — »)™ 7L i factor of g(x) and {z — r)™ Iz not 2
factor of g(x), ther{:fbr} there is a polynomial h(z) such that
g@) = (@ — r" hx) and = ~ r does not divide halz).

Since f(z) =M 1 h(z) and g(z) = (@ — r)™ iy (2), the
identity (86)\@*@&0111@5

87 AN — ") = Q@) @ — 9 ().

Her}cq.(itf — rhiz) = Q@) (x). Alsoz — 7 does not divide I fz).
'Rim;refere z — rdivides Q(z), Next it will be proved that (z — 7)°
3ot a factor of Q(z). This will be done by showing that, if
(z — 7)% is a factor of Q(x), then there is a contradiction. Thus,
if (2 —7)% i a factor of Q(z), there is a polynomial ¢,{z) such
that Q(z) = (v — 1)%Q1(x). If this result is substituted in (87),
and if the result is divided by (x —»™, the identity A(z) =
& — PG {x)h1(x) is obtained. Therefore = — 7 is u factor of A(z).
A contradiction of one of the defining properties of h{z} has been
obtained. This completes the proof of theorem 19,
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THEOREM 19. If flz} = 2® + 62° + 92* — 182® — 4827 — 482
— 16 and g(z) = 2% + 5e® 4 8x + 4, then g(x) 1s the greatest com-
mon divisor of f(z) and is first derivative f'(x). A root of multi-
plictty my of g(x) = 0 is @ root of multiplicity my + 1 of flz) = 0.
If the multiplicity m of a rool of f{z) = O is greater than I, then fhis
reot of f(:r) == O s @ oot of multiplicity m — 1 of g(a) =0. If
Q) = = + 2% — fa — 4, then f(z) = Q(@)g(x). If r is a rool of
mudiiplicity m of f(x) = 0, then r 48 a simple root of Qz) = 0.

s s @ roof of Q(z) = 0, then s is a rool of f(z) = 0. Hence Q(x) =N

has no multiple rools, O\’
One way in which simplification of details in the cpﬁn:ﬁutétion

can be achieved will now be illustrated. If N

(88) fiz) =zt — 52® + 62® + 4z us,\x

then i

(89) (&) = 42 — 152° + JTF 4.

N\
If f{z) is divided by f'(z), fractiongappear as coefficients. But,
if 16f(z) is divided by f'(z), then, alk the cocfficicnts will be inte-
gers. "The tabulation for this d;wglon by detached coefficients is:

& -5
K
4 =156 12 4 15 -850 96 64+ 128
»~< 16 —69 43 16

N/

L\ —20 48 48 128
N —20 75 —60  —20
O —27 108 —108

N
Therefars “16f(z) = (4 — B)f'(x) — 27x% + 108z — 108. If th?
notafien ¢ = 16, qlz) =4z — 5, Filzy = f{z), Falz) =
—|— —}_:t: — 4 ig introduced, then
‘(90) cof(x) = q{x)F1(x) + 2773 (z).
Again, the tabulation for the division of Fi(z) by Fa(x) by de-
tached coefficients is:

-4 -1

-1 4 -4 4 —-15 12 4
4 -—16 18

1 -4 4

1 -4 4
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Hence
{91) Filz) = (=42 — 13Fs(a).

Thercfore, by (90), cof(z) = {( —4x — D) + 27}1#(2). There-
fore Fal2) is a common divisor of f(x) and F,(2). Hence, if f{a)
is defined by (8%), then g(a) = 2% — 42 + 4. If the quantity
square brackets is simplified, and if the identity is divided by ep,
it is found that

(92) fz) = Q2)glx) O\

with Q{¢) = 2 —z — 2. The gencral argument used in {iﬁ)\-’ihg
theorem 19 shows that the roots of f(z) = 0 arc th&iﬁyoot-s of

@(z) = 0 and that the roots of Q(z) = 0 are simples EOUL":‘“
,\ g

N\

PROBLEMS \
AN\

A,
In each problem, if £} is the polynomial in thg{éaﬁmtinn , find Qlx). Solve
&{z) = 0; then solve f{x) = 0. )

Lozt — 2% — 11 412, +36 =0, (W
cat T 4 92% — 27 — B4 = 0, W2

o' 4 92° — 2% — 141e — 252 — 00N

#t = 1453 4 6927 — 140z + 100 = 0,
Bt T =

2 Bt 452 — B — €.

2° = 7ot + 1007 — 2587 M 162 — 4 = 0.

2t —det 5 L 1R™— 4 — 8 = 0.

Lz — 1220 + 5T 13422 4+ 156z — 72 = (}
10. z° — 7zt — 2;;"{45:52 + 65z + 25 = 0.

1L w® — 35" —(G%™ 272 — 322 + 12 = 0.

12, o° — 2541025 + 82 4+ 33% + 18 = 0.

18 of LGEH- 1824 — 4o — 4727 — 122 4 36 — 0.
14, 25 £'38° — Iho! — 352° + 0022 4 108z — 216 — 0,
15 284225 — 04 — 42 +315° — 03 4+ 9 =0,
16."}0'—!— dz® — 6z — 3208 4 2 + 60 4+ 36 = 0.

,..\\

X
A\ Y

PEAG oW

1

!

) 4

Now let f(x) be the general polynomial (6) of positive degree,
and let f'(z) be its first derivative. Tt will be proved that f(z)
and f'(z) have a greatest common divisor g(z). It will also be
proved that, if f(z) = 0 hag a multiple root, then g(z) is not 2
constant, that is, ¢(z) actually involves z. The eonverse of this
staternent will also be proved. Then facts which are analogous to
those stated in theorem 19 for a particular polynomial will be
proved for the gencral polynomial.
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If f(z) is linear, then f'(x} is a constant. Hence, if a polynomial
in z is a common factor of f(z) and f/{x), then that polynomial is
a constant.  Therefore, by the definition of greatest common
divisor, which was stated preceding (70}, gfz) is L

If f(x) is not lincar, then there are polynomials g, (z) and r (),
guch that the degree of r; () is lower than the degree of f/(z}, and
that
(93) f@) = q(@)f'(®) + rlx).
1f 1 (zx) is mero, then f/(z) is a factor of f(z), and g{x) is (1/nag)f" (v}
It will now be proved that, if »(x) = 0, then the greatest comaton)
divisor gz} of f{x) and f'(x) iz the greatest common div 1501\1‘?‘1 (.1)
of f{z) and ry(z). Thus, it will first be proved that g(z)dsa fuctor
of hyfx). Since g(x) is a factor of f{z) and f'(z), th,ere are poly-
nomials (z) and £;{z) such that
(91) J@) = Qz)g(x), and [fz) = Ql{x)g(x)

Henee, by (93), \"

(95) [Q@) — @@ (@)l Fri(z).

Since Q(x), ¢{x), and @y (x) are pgly’riomials, Qlx) — (@)@} is

& polynomial, Hence (95) showsthat g(z) is a factor of ry(z),

Also, by hypothesis, g{z) i ahﬁtm of f'{x). Therefore g{x) is a

common factor of f'(z) and&Nz). Hence, by the definition of the

greatest common divisef Bi(z) of f/(x) and r (@), it is true that
glx) iz a factor of hl&\; Tt will next be proved that hy{z) is a

[actor of glx). Sinedh, (x) is a factor of f’(z} and ri(x), there are

polynomials Sl (sc} and Sa{x) such that

(96) ’»(J.) Sy @k (2), and 7i{x) = Selx)h (@),
TIence,,b’i\QS), it is true that
O 7@) = (@S (@) + Spl)la @),

\nce ¢1(x), S1(z), and Sa(z) are polynomials, 1{2}S1(z) + Sa(x)
is a polynomial. Henee (97) shows that h;(x) is a factor of f(z).
Now, by hypothesis, &1(z) is a factor of f'(z). Therefore by () is
a common factor of f{z) and f’(x). Hence, by the definition of
ﬂle greatest common divisor g(z) of f{z} and F/(x), it follows that

i) is w divisor of g(z). Since hy(z) is a divisor of g(z) and ¢(x)
is a divisor of hi(x), they have the same degree. Thus there is a
constant k such that g(z) = k-Ai(z). Also & = 1, since the lead-
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ing coefficient of g(x) is 1 and the leading coeflicient of by (x) is L.
It has thus been proved that the greatest common divisor g{z) of
J(z) and ['(x) is the greatest common divisor /iy (x) of f'(z) and
¥i (x).

If ri(x) is of degree 0, then hi(x) is the constant 1. Ilence
glz) = 1. If r(z) is of degree greater than 0, then there is g
polynomial gq(x), and a polynomial ro(x) of degree lower thun the
degree of ri(z), such that

(98) J'@) = @@r (@) + re(e).

If ra(x) is indeed zcro, then ry(x) is a divisor of f/(2), ;n,a;id\‘?a.\l(x)
is the polynomial obtained by dividing r () by its leading coef-
ficient. But, if 7,(x) = 0, then the argument whighi Whe applied
to (03) to show that g(z) = hi(z) can he :J,pplicgl'\té 19%) to show
that, if Ay(z) is the greatest common divisorBtir (£) and rola),
then hy(z) == ky(x), and hence ¢(z) = hg(i‘).\:

If this process is repeated, the anucr@;})f steps [inally termi-
nates in one of two ways. Thus, it telfiiates if ever o remainder
of zero is obtained. If the divisor which yielded this zere romain-
der is divided by its leading coeﬁi’dnnh the result is the greatest
common divisor of f{z) and f4&). If no zero remainder is ob-
tained, then the sequence terifinates because the degrees of the
functions f(z), f'(z), r(a)) ra{x), -++ formn a sequence of non-
negative integers such that cach integer in the sequence is less than
the preceding integc™ For example, the degree of r{x) in {(93)
isat mostn — 2,@nd that of ry(x) in (98) at most n — 3. Ilence,
if no zero remaifder is obtained, then, after at most » — 1 iden-
tities, of which’(93) and (98) are the first two, un identify is ob-
tained in(Which the degree of the remainder is zero. If this last
identipj:\‘%é the kth identity, then this identity is

»QQ.Q):.: Frea(®) = gp(@)rp—1 (@) + e

NIA (99) 73 is indoed a non-zero constant. Now the argument which
was applied to (93), to show that the greatest common divisor of
f(z) and f'(z) is the greatest common divisor of f'(z) and n{x),
can be applied to each of the identities in the sequence. Hence
finally it is proved that g(x) is the greatest common divisor of
ri—1(z} and 7. Since 7 is a non-zero eonstant, it follows that
() = 1. 'This discussion, with theorems 17 and 18 and the proof
which follows (86), completes the proof of the following theorem.

Q!
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TuworeM 20, The general polynomial f (x), of positive degree, and
s first dertvetive f'(z) have o greatest common divisor glr). This
polynomial g(x) is found from one or more 1dentities of the form (93).
The equation f(z) = 0 has o mulliple root if and only if g(x) is not
a constant.  If the multiplicity m of o rool of f(x) = 0 is greater
than 1, then this root of f(x) = O is @ root of g{x} = O of multiplicity
m — 1. If g(x) is not a constant, then @ root of g(x) = O of mudti-
plicity my is a root of f(x) = O of mulliplictly my 4 1. There is a
polynomial Q(x) such that f(z) = Qx)g(x). The rools of Qr) L0
are simple roots, They are the distinct rosts of f(z) = 0. O\

\S

It iz to be noted especially that in the proof of theorem 20 it
was not assumed that the coefficients of f(z) were fead numbers.
Also it was not assumed that the roots of f(z) ﬁQﬁ\{f(al‘e real.

TurorEM 21. If f(x) ¢s a polynomial willyreal coefficients, if a
and b are veol numbers such that b = 0, g if a + bi is a root of
mulliplicity m of f(x) = 0, then ¢ — bg,\?fs}L root of mulliplictiy m of
Jlx) = 0. O

")
A

Proor. Since g; 13 a real n}:ﬁ'fi’hf;'l', the c-onjuga.te;- of the coeffi-
cient a; is g Also, if ¢ + degnd » + »i are two complex numbers,
the conjugate (¢ + d?l(ﬁ =+ #2) of the product (¢ + di)(u + vi) iy
the product (e — fs)@a “ ui) of the conjugates of the two numbers.
Ib particular, (6% d2)® = (¢ — di}*. Repeated use of these facts
shows that, 3%/ is any positive integer, and if % is a real number,
then ?_;(q »{aﬁ'ﬁ)’”’ = k(e — diy™. Next, if ¢ + dé and « + vt are two

cnmpl'& ﬁumbcrs, then the conjugate (¢ + di) 4+ (v -+ v} of their
SI}Lﬁ‘:'iS the sum (¢ — d4) + (u — vi) of their conjugates. ITence
~itdollows that the conjugate of the sum of a finite number of com-
plex numbers i3 the sum of the conjugates of these numbers. If
J(z) has the nofation (6), then fla 4 bi) = agle + b)) + aila
+ bt -4 a,_y{z + b)) + a,. By the preceding discus-

sion fla + bi) = aple + bi)* + aye + 0" 4+ -+ ana{a + bi)
+ @ = aola — W)™ 4 arla — )"t H e+ anyla — bi) + a,.
Therefore fla + bi) = f{a — bi).
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By hypothesis fla 4+ ) = 0. Therefore fiu —I-E) = 0. Alsp

0 =0, and fle + bi) = fla — bi). Therefore flu — b)) == 0, and
e —biis a root of flz) = 0. Sinee b # 0, ihe numbers a + b
and @ — & are distinet roots of fle) = 0. Ii has been proved
that, if the polynomial f{z) has veal cocflicients, if & and b are veal
numbers such that b # 0, and if @ + &7 ix a root of fix) = 0, then
g = bi is & root of f{iz) =0. The multiplicity of & — bi for
Jix) = 0 will be designated by my.

By theorem 5 there is u polynomial () such thal Q)

N

(100) J@) =[x — (o + b))l — (v — bD)ya(o). "\.\“.\

The usual process of finding go(x) is fivst to find gk{xl ‘-.lllih that

fle) = [z — (@ + bi)lgi(x) and next to find gola) wmh that; ql(a)
= ¢ — (@ — bi)gu(x). Since [ — (o + b))l ~§ {n — b)) = 2°
— 2ax + o + b?, the pol} nomial q_({) MY fags ’rouncl in ene step
by dividing f(z) by 2* — 2ax + o + tIn this process only
operations of addition, subtraction, cmt‘k 11111111})!1(4‘“011 m(, per-
formed on the real cocfficients of f(x an(l of 22 — 2az - a2 + b2
Thercfore the coeficients of qz(:,)un( real.

It will be proved by mduttu}n that m; = m. Tt iz known that
m=1and m; =1, It wilkpow be proved that, if m = L and
my > 1, then there is a contihdiction. By (1007, il m, > 1, then
r—(a —bi)isa taclul\of g2().  Since the cocfficients of go(x}
arc real, the arquQ?r preceding (100} is applicable Lo gz{x).
Therefore there, 1s% a polynomial g¢4{x) such tlmt qafx) =
[+ = (@ — B> (a + bi)lgs(e). Ilence, by (100), & — (@ +
b7 is a faétor of flx). Thiz contradicts the hxpothef-ln, that
a+bii 18 a\lzc\)ot of multiplicity 1 for f(x) = 0. This completes the
\euﬁc W that my = m it m = 1.

H, m > 1, then z — (a + b2) is a [nctor of g(2), by (100). By
’rl;e\argumon‘r proceding (100), it is known that z — (@ — #) I8
_al6 a factor of g2(z). By the hypothesis of the lemma for the
induetion, if mg is the mulliplicity of ¢ + 67 for gofx) = 0, then
mgy is the multiplicity of @ — bi for gz('c) = {3. Then there is 2
polynomial ¢4(x) such that gufz) =[x — (o + i)™ [¢ — (@ —
™ qa(x), and neither z — (g + b%) nor 2 — (@ — bi) iz a factor
of gs(x). Bubstitution in (100) shows that m = my + 1 = M.

Other theorcms about polynomial equations arc given in the
references cited at the ond of this book.
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PROBLEMS

Bolve the following cquations and thus verify theorem 21 for these aquations.
Lz — 22— 5 —6 =0,

2. 2%+ 828 + 7 +12 = Q.

8 2f —pt — T —Ta? ey 24—,

4. 2% — 4t + 22 130 — 2 +12 = 0,

Bhow that each of the following equations has at least one multiple root

Solve the cquation and thus verify thearem 21. . (\\
6. 2t — 4% 41027 — 120 + 9 =0, .
6 2t — 22 LT — Gz £+ 9 =0, '<>)
7. &b — 32° 4 155° — 252° + 602 — 48z 1 6d = 0. {5,\ -
8. 2% — 3% + 92! — 1327 + 1827 — 12¢ +8 = 0.
9. 7 — Bzb 4+ 142° — 260* 4 3325 — 2022 162 — 4 = ,\\“3

10, &7 — 25 4 455 — 102t + 1087 — 1622 4 21 — 9_0'

11..1: + dxt —|—.::-—~14x —20r — 8 ={Q. SN
12, 2* + 25 — 22 — 6z + 5 = 0. \\\\'
13.1‘ — B 4 1Txt — 24 + 16 = 0. /‘\'
14, 5% — 26t — 102® + 82 4 33 + 18 = 0. \
o\,v'
O
N
O
\’g‘

A\
A\
A\
4,
QP
N
'..\‘\..
e



CITAPTER 4

ISOLATION AND COMPUTATION OF REAL ROOTS
OF REAL POLYNOMIAL EQUATTONS
A\
1. Isolation of real roots by Sturm’s theorem illustrated. Ip this
c¢hapter it will be explained how to determine whether a 1ea,l‘rml\ -
nonial equation has any real roots and how to computeindecimal

7%

form each real root which it may have. N

Sturm’'s theorem concerns g real polynomial eqll{&bn which has
no mulliple roots, Henee, in the following naderieal Hlustration
of the use of Sturm’s theorem, the first step is I determine the great-
esl common divisor g(x) of flx} and [’ (;t,), \b J(z) designates the
pelynomial which forms the left- lmud \lde() uf the equation

(1) at — ga® 42 ‘LTT'.EC —3 =40,
then &
) ) = A" 1267 + 83 + 4,

1 Fi(z) = 2% — 3% ¢ 2}+ 1, then f'(z) = 4F;(z). Now, if /(z)
is divided by ffl(x‘}\\the equatlon f@)y = @ — DF() — & +
5z — 2 results, (Hence, if Fp(z) = 2% — ba + 2, then 4f(x) =
(x — L)f"(z) ; *4F2(1:) lf the notations

N
@ omAf @) =z—1, nE=4-2"+5 -2
are usea} this identity becomes

@ ) eof(5) = @) (@) + ).

\ Thig identity may be roughly checked. Thus, if x is replaced
by 2, then the equation ¢of(2) = ¢ (2)f(2) -+ r(2) results. B¥
(3) and (2) this equation is 4-5 = 14 + 4-4. Since this last
equation is a true relation between numbers, and since 2 was 2
value of z chosen at raundom, it is probable that the identily (4)
is correct.

The identity (4) is the first identity in the usual process of find-
ing the greatest common diviser g(x) of f(x) and f'(z). In erder
82
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that {4) and subscquent identities may be given a unified nota-
tion, fo(x), f1(=), and fu(z) are defined by

(5} folw) = f(=), file) =12}, flr) = —n(o).
Then (4) becomaos

(6) cofo(z) = g (@)f1(x) — fulz).

[t iz to be noted capecially that f,(x) is the negative of the re-
mainder r{z), which was ohtained in (4). O

Next, a positive constant ¢, and polynomials g,(x) and ng),
will be found such that P

Ny

(7) elf1(e) = qu(@)fele) - fulx) \‘

and the degree of f3(z) is less than the degreq“({f’\fz(a:). Since
fi(r) = 4F(x) and fu(2) = 4F(x), therefore tlie computation ix
more simple if Fy{z) is divided by Fa(x). '{he identity Fy(x) =
{x + 2)Fz(z) + 10z — 3 results. Hence 413}(55) = (¢ 4 2)4F;(x)
-+ 4(10z — 3). Therelore (7) is true it

®  a=1 6k =z+2 f& =410 +3)

Finally, a positive cunr.-stant,‘céz:?aﬁd polynomials q1{z) and fy{r),
will be found such that 3%

© eofp (I g @)fs(x) — ful)

3
and the degree of f@(é\){ 1 less than the degree of f3(x). Since fs{x)
is a linear functiehy it follows that fi{z} will be a constant. Sinee
f2(x) = 4F,(®) G@nd f3(z) = 4(—10z + 3), therefore the computa-
tion is per’f@{'med with Fur) and —10z + 3. Since division of
Folz) byN“<10z + 3 would introduce fractional cocflicients,
100Fy 3 iy divided by —10z + 3. The result is 100Fy(x) =
(=10% "+ 47)(—10z + 3) + 59. If this result is multiplied by 4,
..anc? if the relations fu(x) = 4F5(z) and fa(x) = 4(—10z + 3) are
\w:ed it is found that 100fs(z) = (—10x + 47)fs(x) + 236. There-
fore (9) is truc with

(10) e =100, ga(z) = —10z -+ 47, fulzx) = —236.

The identities (6}, (7), and (9) will now be used to determin.e
the greatest common divisor of f(x) and f'(z). The argument 1s
precisely that which was applied from (93) to (99) in chapter 3.
The greatest common divisor of fo(#) and fi(z) is, by (6), the
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greatest common divisor of fi(2) and fu{2), and hence, by (7), the
greatest. common divisor of fy(x) and f3(x), and hence, by (), of
Falae) and fulx). SBince fi{x) s a non-zero consiant, it tollows that
the greatest common divisor of fix) and f'(x) is 1. By theorem
20 of chapter 3 equation (1} has no muliiple roota.

The Sturm [functions for eguation {1} arc the funclions fy(r),

fite), fala), falx), and fif{z). Therefore

Joley =2t — L + 4® + e — 3, X
Ji@) = 4" — 3% 4 22 + 1), <O

(11 folm) = 4% — 5z 4+ 2, (\}‘"’
falz) = 4(—10c + 3), m.\z.

file) = —236.

) ¢ \ 7 . .
These functions are also designated by fogfiy /s, fi, 1. They will
be used later fo obtain information }Ll)out vhatever roal roots (1)
may have,

PROBI’TF‘\iq
In each of the following problem% th‘l“ thut the equation haz no multiple

root. Write all the identities sisedl in this process and roughly check each
identity. Write the Sturm [mlt tions.

1% — 322 — 15z + 16407

2. L322 412 — 10 — 0.
3.x3+3x3—[—t"|.1:—L2=0. 4. 5% — 322 — 6 1 =0,
5. o* 122 + 125711 = 0. 6. 0 — 152 462 —7 = 0.
7.3‘-]-4:{,—-—4.33\4—43—1—0 8 xf - 4 — g+ 1=0.
9. x —bx'+‘2‘—0 10. «* 4- 322 — 7 = .
11.9:— 1% = 0. 12, % — Bz 4+ 2 = 0.
13, &t +'8q—4:c+1—{] 14, * — 8% + Br — 2 = 0.

4

15.2,«{—2L+¢::2+29:—|—2—0 16. 2! — 2% — 22 420 — 1 = 0.

'\Lhe second step in the use of Sturm’s theorem is the tabulation
#/signs, The left-hand columan of the table lists the Sturm func-
tions in order and a symbol ¥ which will be explained later. By
theorem 11 of chapter 3 an upper bound for the real roots of {1}
is 5 and a lower bound is —3. Ilence the top row of the table
lists in order values of & between —3 und 5. The symbols P and
—F in this row will be cxplained later.
If x = 0, the values of the Sturm functions (11) are —3, 4, 8
12, —236 respeetively. The signs of these numbers are — + +
4+ —. In the table these signs are listed in the column with the

Q"
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value 0 of z at the top.  Again, if @ = 1, the signs ave + + —
— —. 'Fhese signs are listed in the column with the value 1 of
@ ab the top,  All the signs in the table except those in the column
headed by P and those in the column headed by —P are found in
thig way. If Pis a positive number, the signs of the leading terms
of folP), filf), fo2(P), fs(P), fe ave + 4+ + — —. These signs
ave listed in the column headed by P. The signs of the leading

terms of fo(—P), fi(=P), fo(~P), fa(=P), fs are + — + + -

These signg are lsted in the column headed by —P. N\

O\

-P ... -3 -2 -1 0 1 2 3 4 5§ R

fo| + + o+ -+ N+
Al - R S S S S S OSSR
L+ + o+ o+ o+ - - - e +
5|+ + + + + - - -ANY- ~
fr] — - - - - = __\\_ - B
V| 3 308 3 2 1. AN 11 -

"

The last row of the table will npvﬁ‘“bé explained. The sequence
of signs in the column headed.bﬁ;”;ﬂ' is — + + + —. The hrst
two signs — 4 in this sequenge’iﬁcscnt a varialion in sign because
they are opposite. The seeend and third signs -+ + do not pre-
senf o variation in signe The third and fourth signs + + do not
present a variation. ¢ The last two signs + — present a variation
in sign. Theretorgzthe number of variations in this sequence is 2.
This fact is reco\i‘ti(?d by the enfry 2 at the bottom of this column.

N,

The nu:rnl)m;\o,f'variations in this sequence i3 designated by 1y
Therefore4%/= 2. Again, the sequence of signs in the column
with —:Qs;t the top is 4~ — + + —. Since this sequence presents
threagdriations, the entry 3 uppears in the last row in this column,
;Qhé\’friumber of variations ip this sequence is designated by 1V _,.
Therefore V_; = 3. Each enlry in the last row of the table is
obtained in this manner. V., designates the number of variations
in the scquence of signs in the column with ¢ at the top.
Sturm’s theorem states that, if @ and b are real numbers, neither
of which is a root of (1), and if @ < &, then ¥, = T and the
number of real roots of (1) between ¢ and b is 1, — V. For
example, since V_y — ¥_; = 0, there is no real root of (1) be-
tween —2 and —1. Sinee ¥_; — Fo = 1, there is one real root
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between —1 and 0. Since ¥y — V1 = 1, there is one real root
between 0 and 1.
In the works to which reference 1s made at the end of this book
it is proved that, if g(z) is the real polynominl by® + byt
--+ by_1z + by, then there is a positive number &, depending
on the coeflicients in g(z), such thaf, if I > k, ihen the sign of
g{P) is the same as the sign of bp/*". Tt follows that there is a
positive number ¢, depending on the eoefficients in g(2), such that,
if @ < —e, then the sign of g{@) 35 the same as the sign of th}.
Now let g{z) be taken in turn to be the Sturm functiongy(11).
Then there is a pogitive number 7* large enough that aImultano-
ously the signg of fo(P), f1(I*}, fo{P), f3(I), fa are tlm ﬁlgall‘: in the
columm headed by £, and the signs of fu(—1}, fl{ }’) Jol—-P},
Fa{—P)}, [y are the signs in the column hea,dp{\l.\hy — I, Bince
V, — ¥Vp = 0, there is no real root greates then 1. Sinee V_p
— V1 = 0, there is no real root less thand"1.
PROBLEI\'IS /

Tabulate the signs of the Sturm functu;;ns of the equations in the problemq
of the preceding set. Isolate the ron.l Foots. lor each renl root determine
consecutive integers such that the ) 100t. is between these intepers.

2. Sturm’s theorem. Inl section 1 Sturm’s theorcm was wsed o
isolate the real roots gf'the numerical equation (1), This theorem
will now be provédd It coneerns the general real polynomial
equation f(z) =@ywhich has no multiple roots, and arbitrary real
numbers @ a:m@ b neither of which is a root of f(z) = 0. It is
assumed thala < b,

In thd following proof there are four parts. In (i) the Sturm
funetiohs for f(z) will be delined by a sequence of identities, and
the. $ymbol V. will be defined for the arbitrary real number ¢. In

‘“(}11) the elosed interval of real numbers from ¢ to b will be sepa-
tated into appropriate subintervals, and all the possible types of
subintervals will be determined. In (i) the value of ¥V, — Ve will
be determined if the closed interval from ¢ to d is in turn a sub-
interval of each of the types in (). In (iv) the value of Vo — Vo
will be determined.

(i) By hypothesis n is a positive integer, the coefficients ao, 61,

, @y ID

(12) Jiz) =" + a2 ' 4o a2 + a, o
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- are real numbers, and a5 = 0. Also f{z) = 0 has no multiple
roots. The first derivative of fiz) is designated by f'(x}. DBy
theorem 20 of chapter 3 the greatest common divisor of fiz) and
f'{x) is the constant 1. If f(z) and f'(z) are designated by fu{r)
and fy(x), then there are polynomials ¢(x) and falx), and a posi-
tive constant e, such that

{13) cofolr) = n()f1(x) — fol2)

N\
and the degree of f(z) is less than the degree of A@). T fo(z) e
a conslant, the Sturm functions are fo(x), f1(x), and fal@h NI
J2(%) 18 not a constant, then there is a sequence (14) of i(l:{hltili(ts
such that in thoe last identity fi.(x) is & non-zero constgrfﬁ :

cofoli) = qmix)fi(e) — fz'(xfx""
ey fi () = @@k — k),
(14) : : <

ch—afialz) = Gis—l@jﬁil(iv) — Jelx).

It is to be noted especially tlmj; £, €15 * ", Cr_a Are positive con-
stants, that qi(x), -+ -, qeaae), fol®), -+, fur(x) are polynomials
in x, and that the degreednd f:(z) is lower than the degree of f;_; (x).
In fact, falz), -+, -(x’(z)";i.re the negatives of the remainders in the
identities obta:’med} the usual process of finding the greatest
eommon divisoraff (@) and f'(x). The Sturm functions Jor f{z) are
the functior;{_fﬁm), Sulz), -+, fu(x). They are also designated by
o J1y oo j‘\{k
Nowalet’e be any real number which is not a root of fz) = 0.
In t-hi;:sequence Joley, file), - - -, fele) of numbers it is known that
ig;('c:}' # 0 and that fi{e) = 0. It may be that no number in this
\'ﬂ(’z(fuence is zero, but it may be that one or more of the numbers
Jile), -, fe_ie) are zero.  Let a new list be formed by deleting
each of these numbers which is zero. Then each number in this
final list is not zerc and hence has a sign. This sequence of signs
may present one or more varigtions in sign, or it may present no
veriation in sign.  The symbol V., designates the number of varia-
tions in sign presented by the list fole), fi(e), -+, fu(c) after zero
terms are discarded.
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*(i1) Binee f{z) is of degree », the equation f(e) = 0 has at most
n real roots.  An analogous statement holds for cach of the equan
tions fi(x) = 0, -+, fr_y(a) = 0. Hence all the real roots of all
the cquations folx) = 0, + -, fi_i(@) = 0 conslitute n finite set,
If ¢ and d are arbitrary real numbers such that ¢ < d, then e, d]
designates the closed inferval from ¢ to o, that iz, all numbers 2 such
that ¢ £ w = d. Now the interval [¢, d] and all the roots of all of
the equations fo(z) = 0, «--, frs(x) = 0 may Lave one of the
following relations, The imterval will be said i he of fypeNNL
1o one of these roots is in the interval, It is of type T ¢ 1 oot
of at least one of these equations and if no other numberyin e, 4]
15 a root of any of these cquations. 1t is of type 1 ,i,f}.ﬂ’iH a root
of at least one of these equations and if no other mindier in [e, d]
is a root of any of these cquations. 1t is of Q{;uf\i"l' il there is 8
number s such that ¢ < s < d, fu(x) # 0, and\&N¥a root of af, least
one of fi(x) =0, -, f_y(x) = 0, and if:.sQ'm’tlu: only number in
le, d] which is a root of any of the dghiitions fyle) =0, ---,
Jo() =0, It is of type V if therends o number s sueh that
¢ s <dandfys) =0 andif s i$‘~i:}’m only number in e, df which
18 & root of any of the equationg fole) = 0, -+, fi_(2) = 0.
Therc are other possible typesef relation which an arbitrary in-
terval [c, d] and all the rootadof all the equations fyle) =0, -+,
fu1(@) = 0 may have { However, these five types are the only

types which appeag inthe following proof.

It will now be‘eﬁﬁained how [a, b] is separated into o finite
number of closed'sitbintervals such that each subinterval is of one
of the preceding’five types and two subintervals have either no
point, or (rfg\('ind-point and no other point, in common. Thus, it
may be\(h,ait [z, B is of type I, or of type 1T, or of type III. In
each Of ‘these cases there is only one subinterval, that interval
boiltg Ta, b] itself. Again, it may be that @ is a root of one of

) =0, -+, fr_1(x) = 0, that b is also a root of one of these
\equations, and that no other number in [a, b] is a root of any of
these equations. Then [a, #] is separated into two subintervals
by an arbitrary point % such that ¢ < « < b. Then [a, u] i of
type I, and [u, 8] is of type TI1, Otherwise, there is at least one
of the roots of all of the equations fy(z) = 0, ---, fe_1{z) =0
which is botween @ and b, not cqual to a, and not cqual to b, If
there is exactly one such root r in [@, B], then there are two num-
bers & and by such that ¢ < b, < » < by < b. Also {a, by] is of
type Ior IL, {by, bo] of type IV or V, and [by, b] of type I or 1L
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If there are several such roots in [e, b], then the number m off
these roots is [inite, and the notation =y, ---, r, for these roots
can be chosen so that ¢ <, <+ <1, <6 Then there are
numbers by, -«-, byuyq such that o < by <ry <o-- < b, <7y
L b < b Then [g,b] 1s separated into the intervals [a, ],
(b1, Bal, -y [Buny bunga]y (g1, B Also g, b4] 18 of type 1 or 11,
[Pty Bl Is of type T or 111, and each of the other Intervals is of
type IV or 'V, ,

(iif) Omne property of continuoug functions will he uged in thé
following proof. This is the property that, if g(&) iz a continuous
function, and if the curve whose equation is y = ¢(x) ds vn”one
stde of the X-axis if # = ¢ and on the other side if. & ='d, then
gomewhere between ¢ and ¢ the curve crosses the»,f?(-'zl'xi:-;. This
property is also expressed by the statement thatlifg(e) > 0, and
il glz) = ¢ for each z In [¢, d], then g{d) >Nt is tiue that a
polynomial in @ 13 a continuous funetion of\eyand that fu(x), -- -,
fo_1(x) are polynomials in =. Therefqr;{this properly is a prop-
erty of each of fo(z), <+, fr—1(z). SN

It will now be proved that, if [,g:,:r:i] s of ype I, then ¥V, — V',
= 0. Thus, by the property mantioned, the signs of fy{c) and
fold) are + 4, or they arce®—. Also, by this property, the
signs of fi(e) and fi(d) arest 4+, or they are — —. Thus the
entries in the first twoddws of the eolumns headed by ¢ and d
form one of the follm’}"’i}g four tables:

+ +\\ + + - - - =
{15) \~ , , , .
' \+ + + +

1n thefirat snd last tables these two rows contribute no variation
to ¥{ahd no varistion to Va In the second and third tables
t-hésé' two rows contribute one variation to ¥, and one varation
miu\"Vd. Hence the number of variations which the first two rows
contribute to ¥, equals the number of variations which they con-
tribute to V4 This same argument is applicable to the rows for
Ji and fo, and to each sct of two adjacent rows. Therefore T,
- Vg =0.

It will now be proved that, #f [¢, d] 45 of type IV, then V, — Vg
= (). This will be done by inserting the colvmn headed by s be-
tween the column headed by ¢ and the column headed by d. By
the hypothesis f(s) # 0 in the definition of type IV, and by the
property of eontinuous functions which was mentioned above, the
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gns of fole}, fols), fold) are + + + or — —~ — i fi{s) = 0,
shen the entries in the second row of these three eoluning are
+ + + or — — —. Thercfore these two rows of these three

columns form one of the four tables:

+ 4+ 4+ + + + - - - - -
(1{)) ' ’ !
T S S S

Hence, if fi{s) # 0, the number of variations which the first i?.;}
rows contribute to V. equals the number which they confribute
to Vd. ’;\ ’

If 71{s) =0, it will be proved that the number ol variations
which the first fhree rows contribute to 1. eql;:ﬂf: He number
which they contribute to V. If the entries fou fb@ and fi(d) are
omitted, the entries for the first three rows of\titese columns form

one of the following tables: PN
+ o+ NG -
(17) o , QLo :
Thus, by the property of cqn[’-ihl;cu.m funetions, the signs of fi(e),
fols), fold) are + + 4+ ox — — —. Also, by the first oquation

in {14}, it is true tllaut.§£:nfg(s) = g1 (5)f1(8) — fafs). Since fi(s)
= Qand ¢yfp(s) = {\ﬁt Tollows that fo(s) % 0. Since ry > O, the
sign of fs(s) is opposite to the sign of fy(s). Hence the ecolumn
headod by s jszdhe middle column in one of the tables in (17).
Finally, by tlic\ property of continuous funetions, the entries in
the third zg%are + + + or — — —. This completes the proof
of the s@te'mcnt about the tables (17). Now f,(c) may have the
entry';.} or the entry —, and so may f1(d}. Thus the first table
ln; 7) is completed in one of the following ways:

R S S S S P

|
I

[n each of the tables in (18) there is one variation contributed to
V. and one variation to V. Again, the second table in (17) is
corpleted similarly in one of four ways, and always there is one
variation confributed to V, and onc variation to ¥, This com-
pletes the proof that, if fi(s) = 0, then the number of variations
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contributed to V, by the rows for fo, f1, f2 equals the number of
variations contributed to ¥; by these three rows.

The remaining rows in these three columns can be treated in
one of these two ways. If these columns commenced as in one of
the tables in (16}, and # f3(s) = 0, then the second and third rows
would yield one of the tables in (16). 1f these columns com-
menced as in one of the lables in {16), and if f2(s) = 0, then the
zecond, third, and fourth rows would yield one of the tables 0b§
tained from (17). In general, the rows of the three columns are
considered in sets of Lwo rows each, or in sets of three rowd{ dach.
'The number of variations eontributed Lo ¥, by such a aet\of rows
equals the number contributed to V, by thl:, set, lh.lu, (,(}mplPte‘n
the proof that, if {¢, d] is of tvpe 1V, then V, — hg L0

1t will now be proved that, #f [¢, d] 18 of fype .[){,‘ then V c— Fa
= 0. By the definition of type II the columnahaaded by ¢ and d
are related to cach other as, in the proof ft,) type IV, the columns
which are headed by s and d fthere are r atéd to each other. The
proofl for type 1V also vields the LL(“L that there Vy, — Fy = 0.
Therefore here V, — Vg = O g ™

It will be proved next that, 'af ] is of type IIT, then V, — 1y
= (. Ty the definition of types II] the columns headed by ¢ and
d are related to cach othe™as, in the proof for type 1V, the col-
umng which are headed h“\/ ¢ and s there are related to each othm
The proof for tvpe I3 aldo yiclds the fact that there V, — ¥,
Therefore here T \ V a4 = 0.

Tt will now ],)e proved that, if [¢, d] 45 of type V, then ¥V, — Vy
= f. This willbe done by inserting the eolumn headed by s he-
tween the t}ﬂl‘umn headed by e and the column headed by d. By
hypothdgid fu(s) = 0. It will be proved first that fi(s) = 0, by
showing that, if fi(s) is zero, then there is a contradiction. If
fn(‘i}';— 0 and fi{s) = 0, then, by theorem 18 of chupter 3, s is a
multzplp root of f(z) = 0. This eontradicts the bypothesis that
f(z) = 0 has no multiple roots. Now, by the fact that fi(s) # 0
and by the property of continuous funetions, the signs of f{c),
f(8), fald) are + + + or — — —. Therefore, if the entries for

fole) and fo(d) are omitied, the entries for the first two rows of

these three columns form one of the tables:

0 0

(19) : :
+ + + - - -
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Now fi{x) is the first dertvative of f(x). "Therefore, for the first
table in (19), f{z) is a funelion whose first. derivative is positive
in the interval [¢, d]. Hence f(x) is an inercusing function in that
interval. Therefore the entry for fi(¢) is —, and the entry for
fold) 1s 4, and this table becomes

- 0 +
(20) .
+ + + ~
Again, for the gecond table in (19), f(x) is a funetion wiltgse first
derivative iz negative in [¢, d). Ilence flz) is a decpesing fune-
tion in [¢, d]. Therefore this table becomes g >

+ 0 - D
(21) RV

AY;
Therefore fy and f, contribute one \-}(ﬁ;&‘itm to V., and no varia-
tion to 7. ANV

If fo(s) # 0, then the rows fox fvand 5 yield one of the tables
in (16). If f5(s) = 0, then theXdws for S1, fz, and £y yield one of
the tables oblained {rom Q.‘T:)f." This process is repeated witil all
the rows for fy, .-, Jx mithese columns have heen considered.
Therefore the numbery6f Warintions contributed to V., by the rows
for fy, -+, fx cqual€ the number of varistions contributed Lo ¥a
by the rows far iy -+, /.

Thervfore {Hednumber of variations contributed to V, hy the
rows for Jog VI - -, fi i3 one more than the number of variations
contributéd™“to ¥, by thesc rows. Therelore Ve—Vy=1,if
e, d]9of type V.

‘(i.v'j\ t will now be proved that V, — Vo equals the nuwmber of
yg@l"mais tn {o, B, In (i) it was explained how to separate la, #

“\into subintervals. It may be that there is only one subinterval.

N\ Then, as explained in (if), this interval is [, B] itself, and it is of
type I, II, or IIT. Therefore, by {iii), ¥V, — ¥y = 0. Also, by
the definitions of the types [, 11, and IIT, then ihere iz no real
root of f(z) = 0 in [a, b]. Thercfore, in this case, ¥V, — V3 cquals
the number of real roots in [g, b].

Again, it may be that there are two subintervals. Then, as ex-
plained in (i), there is a real number « such that @ < » < b and
la, u] 35 of type II and [u, 1] is of type I1I. Algo, V, — Vi =
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(Vo= TV) + (Vu— V). By (i) Vo —Vu =0, and V', — |7,
=0, Therefore ¥V, — ¥y = 0. Also, by the definition of the
types 1L and LI, there is no real root of f{z) = 0 in [a, ], and
there is no real root of f{z) = 0 in [«, 5. Therefore there is no
real root of f(x) = 0 in [a, B]. Therciore, in this ease, V, — ¥,
equals the number of real roots in [a, ).

Otherwise, ag explained in (i), there is a positive integer m, and
there are real numbers by, - - -, b1, #uch that |, B] is separated
into [a, bil, [b1, Bl <+, [y Bag], [Bregs, D, Then Vi, — Fie™
Vo = Vi) + (Vo = Vo) 4 (Vy, — V) + (Vg
V). Now a diflerence, in parcntheses on the right-hangaide’ of
this eouation, equals one if there is & root of fla) = 0 imthe corre-
sponding interval, but the difference cquals gero if thére Is no root
of f(a) = 0 in this interval. Therefore, in this{thse, V, — ¥,
equals the number of real roots of f(z) = 0 in*[B.5].

STURM'S THEOREM. Lef f{z) be o real polgdotnial in x of positive
degree.  Lel f(x) = 0 have no multiple_gobts’ Let @ and b be real
numbers such that a < b, fla) = 0, gaduf(b) = 0. Let the Sturm
Sunctions for f(x) be defined as in (14} Then the exact number of
real rools of f(z) = 0 which are hetween a and b is V, — V.

In the references cited ab Liflgioehr_l of this book there are methods
of avoiding computation jfinshe use of Sturm’s theorem. There js
also a modified Sturrp{ﬁ?theorem which is applicable cven if the
equation has mult-ipke\rbots.

P\ PROBLEMS

In cach pf #he following problems show that the equadion has no multiple
ront, ta \{a’{.é the signg of the Sturm functions, and isolate the real roots.
Deterniine conseentive infegers between which eacl real root tes.

1,935 70 | 182 — 13 = 0. 2. 2% — 10:% + 33¢ — 31 = 0,
B — Bl T — 1 = 0. gl —2? —x —6=0.
\5.‘z4—4x3+7x2—9$+3=0. B.owt — 3 4322 —dr 42 =0.
7. 4% — 5z 4 52% — Bz + 8 = 0. 8. % — 105% + 155 — 8 = 0.

9 ot — 22 e — 2 —5=0. 10, 2 — 32" + 2 — 2 — 1 = 0.

3. Descartes’ rule of signs. Scvoral illustrations of the use of
Descartes’ rule of signs will be given in this section, but the rule
will not be proved in this book. As given in the references, the
proof is long but not difficult.
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DwscarTes’ rurs oF stons. If f (x) is a real polynomiol in x of
postiive degree, then the mumber of positive roots af the equation,
J(@) = 0 ds either equal to the number of variations in sign presented
by the cocfficients of f(x) or less than this number by an even integer,

In the equation

(22) . I N EC N IS, St
the signs of the cocfficients are + — + 4- —. Thexe Higus’"]}'e-
sent three variations. By Descartes’ rule the number of¢hositive

. . + Qo
roots is three or one. DBy Sturtn’s theorem if, was prowisd . sec-

tion 1 that there is one positive root of this equationy
- & N
Iz the cquation A\ 3

o'{.'
@3 2® —4e” + 15e* — 280 4 1907 — 420 36 = 0

the signs of the coefficients are 4+ — —I—X.Q\}{— — +. These signs
present six variations. By Descartes’ fude the numbor of posilive
roofs of (23) is six, four, two, or sere.  Sturm’s theorem would
show that therc are no real 1'oot-§.0f 23).

In the cquation R
(24) 2B —6=0
the signs of the coeﬂi(;{énts are + — -+ —. Thaese signs present

three variations. ‘B;\(’?"I})csnartes’ rale the number of positive roots
of (24) iy threeder dne. Stuyrm’s theorem would show that there
is one positiverdos of (24).

In the eg\ll};}-fbr1

(25) O~ 2~ 2% — 2=
Q
thessigns of the coefficients are + — — —. These signs present

~G0e variation. By Descartes’ rule there is one positive root of (25).
\\ In this casc Descartos’ tule gives the exact number of positive
roots.
In the equation

(26) 22 —-1=0

the signs are + —. These signs present onc variation. There-
fore, by Descartes’ rule, there is one positive root. Thig fact was
used in chapter 1.
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If x is replaced by —y in the cquation
(27 P20 - 45 =0,
there results the equation
(28) 1+ +yt+5=0

By Descartes’ rule there iz one positive root of (28). Therefore
there is one negative root of (27). O\

4. Horner’s method. By Descartes’ rule of signs the equ&i‘i@h’
N

(29) 2 — T2 4 14— T =0

.
<« 3

has at leagt one positive root. If fiz} = :cgm{ﬁ'ﬂi:g + 14z — 7,
then f(0) = —7, f(1) = 1, f(2) = 1, f(3) = ~hJd) = 1. There-
fore the curve whose equation is ¥ = f(z) 8rdsses the X-axis be-
tween O and 1, between 2 and 3, and betiygen 3 and 4. Therefore
{29) has one root in the interval { ‘11 one root in the interval
[2, 3], and one root in the interval {3 4],

ITorner’s method of (a,lmllatmg sthe root of (28) which lies be-
tween 2 and 3 will now be Q){QTﬁined‘ This root = will be known
if a number « can be found$such that

{(30) u,\ z=24u

Bince x is a roat \£\29), # 1s a root of the equation which is ob-
tained from (29) by the transformation (30). This equation in w
could be fm:li‘td: hy substitution from (30} in (29)., Thus, if the
opeiatloné\mdlcated in (24w -T2+ w4+ 142 +uw) -7
arg pe(&}rmed and if like powers of » are combined, the equation

(319 B _ 4 —2u+1=0

0"

_)is obtained. The polynomial in @ which constitutes the left-hand
side of (31) will be designated by U(u). Therefore

(32) Jl2) = Ul

under the transformation (30).

A more gimple method of obtaining (31) will new be explained.,
Before the coefficients in U () have been found, they will be des-
ignated by o, €1, €3, ¢y vespectively. Hence Uu) = coit® 4 e
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+ oot + ey, If w in (32} is replaced by a — 2, then (29) iz oh-
tained.  This facf is stated by the identity
(33) el — 2" folz — 20 Feale —2) + o5

=2 - 7% 4+ Mz — 7.
Therefore
(B4 fele -2+ ale —2) + el —2) + o

=g - T2? + 14Oy,

This identity shows that, if f(z) is divided by 2 — 2 unftii‘a' con-
stant remainder is obtained, then this remainder s o required
value of ez U this division is accomplished synpthigtieally it is
cxhibited in the table K7, N\
O\

-1 -7 14 -7 IE .

2 10 8 N\

':_"\\¢l

1 —h 4 \1“

(35)

S\

The entry 1 in the third row and.féui'th column is ¢.
The quotient in (34) is the gidtient indicated by (35). Hence

B6) e — 27 + e 2) e

Therefore

#° — 5 + 4.

R\
37) [eo(x ~\2;f¥ ol — 2) + ¢y = 22 — 5y + 4.

Thig identity ,gghlqws that, if the quotient 2® — 5¢ + 4 in the first
step (35} ipitsélf divided by = — 2 until a constant remainder is
obtained/#len this remainder is the required value of oy This
divisien_Js also accomplished synthetically. A table should be
congfrueted in the usual manner to exhibit this synthetic substi-
tgfién. This table and (35} may be corbined in the table

\\:” 1 -7 1 -7 |2
2 10 s
(3%) 1 —~5 A
2 -
1 -3 -3

The entry —2 in the fifth row and third column of (38) is ¢a. The
quotient in (37} is the quotient indicated in the last line of (38).
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Hence
(39) eple —2) + ¢, =2 — 3.

This identity shows that, il the quotient x — 3 in the second step
in (38) is itself divided by x — 2 until a constant remainder is
oblained, then thig remainder is the required value of ¢, and the
quotient is eg.  If this division is accomplished synthetically, it
may be combined with {38) in the table

N\
1 -7 4 -7 |2 .
2 -0 8 nE.Y
e N
1 =5 4 1 A
2 —6
(40) B N
&/
1 —3| -2 N
2 v
L1 \\\“
~&

The entry —1 in the seventh row anr,ln{e{?ond column of (10} is ¢;.
The entry 1 in the seventh row gnd“first column of (40} is e,
These values of ¢y, €1, g, €3 shdw ‘that U(u) = 0 is indeed (31).

It will now be explained ho,w o find the root u of (31) which, by
(309, will vield the root z.of" f29) which is hetween 2 and 3. By
(30) it. follows that 2 <Gn4-2 < 3 and 0 < < 1. Therefore u
is & positive pmpcr\gicﬁom TTence %? s smaller than u, and w?
iz smaller then 2 evefore an approximate value of » is ob-
tained by dmegﬂ,rdmg the torms involving the third and sccond
powers of % m I’:’.l) Thusg, an approximate valuc of  is obtained

by solvi 1ng\
@) o~ —2u 1 =0
Thf:ﬁ’otation U =g % will be used to indicate that the value & ob-
\'"’bémtfied from (41) is merely an approximate value of w,
Since w is upproximately &, the value of £7(0.5) is computed.

Thus
1.0 —-2.00 1.000 ‘0.5
0.5 —0.25 —1.125

1 -0.5 —2.25 —0.125

Sinee U(0) > 0 and U(0.5) < 0, the root % of (31) is befween 0
and 0.5. By synthetic substitution it is found that U7(D.4) > 0,
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Therefore

(42) 0.4 < u <05
and, hy (30},

(43) 24 <x < 2.5,

Thus it is known that 2.4 iz an approximation Lo the required
root of {29) and that this approximation is correct in the tenths’
place. By definition, the statement that the root is corrdus G k
decimal places means that the digits to the left of and in ‘tllt‘ kth
decimal place are correct. O

The digit which is in the second decimal place of s u “and hence
also of z, will now be determined by finding an g\qnaf:mn which ig
related to (31} as (31) was related to (29). "l%l‘m the root u of
(31) will be found by finding a number v saghvthat

(44) # =04+ 7 \“’

If V(v) is the polynomial obtained bj Esmg {44) in (31), then v 18
a root of V(v) = 0. The coc fﬁment% of V{z} will now he found
from the coefficients of {/{u) h‘y 2 table similar to (10), i which
the coefficients of U7(xu) Were' found (rom the coefficients of f(z).
The table is

1 4% 2.0 1.000 |0.4
(e o2 —0.896

{45) MK /

0 I —0.2| —2.32
&, 0.4

O\ .

N 1 0.2

\ ) Therefore v satisfies the equation
(46) 4 0.2° — 2.320 + 0.104 = 0.

Bince 0.4 < u < 0.5, therefore 0.4 < 0.4 4+ p < 0.5 and 0 <2 <
0.1. Also » =, 0.104/2.32, Therefore v =, 0.04. By synthetic
substitution it is found that V(0.04) > 0 and V(0.05) < 0. There-
fore

40N 0.04 < v < 0.05,
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and
(48) 244 <z < 2.45,

It is now known that 2.44 is an approximation to the required root
of (20) and that this approximation is correct in the hundredths’
place.

The digit which is in the third decimal place of », and hence
also of % and of z, will now be determined by finding an equation
which is related to (48) as (46) was related to (31) and a3 431)
was related to (29). Thus, the root v will be known if g mlmber
7 can be found such that O

(49) v = 0.04 +r. N

If R(r} is the polynomial obiained by using (4@)\1n (40}, then r iy
a root of B(r) = 0. The table
AN

1 0.20 -2.3200 0 (34000 [ .04
.04 (.009¢6 —*[) x092!11(‘

1 0.2¢ —2.3108) 7 0.011584
0.04 00112

(507
1 o.28] D%
0.04C
1 Q\‘s‘z

defermines tha c’oefﬁments of R{r) from those of V{¢). Therefore
T aa’rlsﬁes thf,- equ.mtlon

(51} \“, 4 0.32r7 — 2,2092r + 0.011584 = (.
B~v.,\(—19) and (47) it is true that 0 < v < 0.01. Therefore » =,

0 011581/2,2092, and r =, 0.005, By synthetic substitution it is

fuund that 17(0.005) > 0, and V(0.006) < { Therefore
(52) 0.005 < r < 0.006, '
and

(53) 2.445 < 1 < 2.446.

Therefore the approximation 2.445 to x is correct in three decimal
places.
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The number r will be known il a number ¢ ean boe found guch
that

(54) r = 0005 + s.

The coefficients of the equation satisfied Ly s are determined by
the appropriate tabulation, and it is found that the number g saf-
isfies the equation

(55) $* 4+ 0.3355% — 2.205025s + 0.000006125 = 0.

The pelynomial in (55) is designated by S(s). By the line\ar tgqns
in (55} ¢(\A

. 0.000096125 O
(56) ¥ e g 205025

Thercfore s =, 0.000014. This indicates that thic thgit in the fourth
decimal place is sero.  This fact iy verified ifeomputing S(0) and
8(0.0001). Since S{0) > 0 and S(U.OOQI\)\K 0, therefore the root
s of (55) is indeed between O and O,UQ(kt Thevefure

{(57) 24450 < x X 24451,

and the approximation 2.4450.’10" z is correct in {our deeimal
places, The diseusgion pr(;(;edirig (67) illustrates the procedure if
at any step the linear tel'glé.}séem to yield & zero as the next digit.

It is to be noted especially that in thiz illustration of computa-
tion by Horner's method each of the roots z, «, », 7, 5 is a positive
number.  Therefgfe™the various continued inequalities, which ex-
hibit the clogeness of approximation at euach step, present no
difficultics, "

If a nggative root of an equation iz to be computed, this sim-
plicityymby also be achieved. The method will now be explained.
The~gquiation 2* — 22 — 2 + 2 = 0 has 2 root between —2 and
‘*1;, because, if Jay=u® — 52 4 + 2, then f(—2) <0 and

LD > 0. By z = —z, the equation —2® — 22 42+ 2 =018

V) obtained. An equivalent equation is 2% + 22 — z — 2 = 0. This

equation has a root between 1 and 2. The negative of this root

ig theroot between —2and —1 of2% — 22 — 4 + 2 = (). Horner's

method s applied to compute the root of 28 4- 22 — z — 2 = 0
which is between 1 and 2.

PROBLEMS

For each equation in the preceding set of prohlems find by TTorner’s method
an approximation to each real woot corrcet in three deeimal places.
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The preceding method of obtaining the digits in the suceessive
decimal placcs of a root of an equation is referred to as the method
of transformed equations. It eould he continued until the desired
number of decimal places had heen reached. There is o more,
simple method which may be uwsed advantiageously al any siep
after ihree deecimal places have been obtained. Ty this new
method about as many more decimal places are obtained simul-
taneously as have alrcady been obtained. The new method, whiely
is referrad to as the correction method, will now be explained.

By gynthetic substitution it is found that S(0.00004) > 0 an

S(0.00005) < 0. Therefore 2N\
(58) 0.00004 < s < 0.00005, G
and ’\:

(59) 2.44504 < x < 2.44505. )

The approsimation 2.44504 is correct in fiyg\decimal places.

Tt will now be explained how (68) caf be used to obtain an
approximation to § correet in elghf demmal places. Since 0. 00(]0—L
< s, it is true that (0.00001)% < &*, and'0. 33)(0 00004)2 < {.335s
Tlence (0.00004)* - 0.335(0.00[1[?‘.})2"< s + 0.335s°., The num-
ber (0.00004)% 4 0.335(0.0000D2 will he designat(zd by ¢ and
will be computed later. At present the details are more simply
expressed if € is used 1r\tmd of this number. Therefore,

(60) o \@ 00004)% + 0330(0 00004)2,
(61) O < s 403355

Tf the equation (55) is rewritten in the form 0 = &* + 03355
— 229592Q:’.\I— 0.000006G125, then the inequality (61) can he sub-
tra.cted,\\ﬁ(@m the equation correetly, The result is

(622 0 — ¢y > —2.205925s + 0.000096125.
Miﬁ"ﬁplication of both sides of (62) by —1 gives
((;3) (1 < 2.2059255 — (.000096125.
Addition of 0.000096125 to cach side of {(3) gives
(64) ¢y + D.000096125 < 2.295925s.

Division of both sides of (61) by 2.295925 gives
¢+ 0 000090125
T 2.205025

(65) < 8.
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Comparison of this result with the fraction in (5}, from which
the approximation 0.00004 was obtained, shows that the numer-
ator of (56) is too small, and that a correction of more than €,
should be added to this numcrator to obtain the exaet value of &,

Again, since s < 0.00005 by (58), it is truc that s* < (0.00003)2
and 0.38355° < (.335(0.00005)%. Ilence % -+ 0.3355% < (0.00005)3
+ 0.335(0.00005)%.  The number (0.00005)° 4 0.335(0.00005)2
will be designated by C,. Therefore,

(A6) Ca = (0.00005)% + 0.335(0.00005)%, . W™
(67) $ 4 0.3355% < (. R\,
The result of subtraction of (67) from (55) is (»'I;‘M
(68) —~2:2059255 + 0.000006125 > 0 < &,
Therefore N4
(69) 22059255 — 0.00009{{25\2 s,
{70y 2.2059255 < €y 40000096125,
- § %;D_’}}pb(}%{ 25
WN2.295925

The exaet value of s igrhetween the fractions in (65) and (71).
The numbers fgﬂ’@i Cy will be computed first. Then the nu-
mersators in (65) ‘é{’(?l) will be found.  Finally the two divisions
will be performed. “The quotients will be numbers between which
s lies. It willBe Tound that these quotients agree in cight decimal
paces an'd\:diSa-gree in the ninth decimal place., Thus & will have
been fowitd correct in eight decimal places, Inally, a single
di&’%ﬁi&}," by which the two longer divisions muy be replaced, will
bewexplained.
OBy (60), Cy is the value of the polynomial

2 4+ 03352 4+ 0.2+ 0

when 2 i3 replaced by 0.00004. The synthetic substitution for the
caleulation of €'y is exhibited now:

1 0.33500  0.00000 00000  0.00000 00000 00000 | 0.00004
0.00004  0.00001 34016  0.00000 00005 36064

1 0.33504 0.00001 34016 0.00000 00005 36064
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Therefore
(73) ¢y = 0.000000000536064.

The valze of C3 Is obtained by synthetic substitution of 0.00005
in (72). Therefore

(74) € = (.000000000837625.
Substitution of (73} in (65) and (74) in (71) shows that O
i 0.000096125536064 0.000096 125837625 \\\
(1‘5) <8< ';“}
2,295925 2.295925 A ™
l"s“’
These divisions will now be exhibited. :\\ ‘

\
_ 0.000 041 SRR
2.295 925]0.000 096 125 536 14

01 837
v

4268536
_A295 925

*l
SNT 092 811 0
o8 1836 740 0

> 155 871 06
137 755 50

¢ 18 115 564
N K\ 16 071 475

O 2 044 089

Q> 0.000 041 868

\J 2.205 92519 000 096 125 8337 625
O 91 837 00
N\ ) 4 288 837
205 025

o2 912 6
836 740 O

156 172 62
137 755 50

18 417 125
18 367 404}

49 725

= = B
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These quoticnts agree in cight deeimal places and disugree in the

ninth, Therefore

(76) 0.000041867 < s < 0.0000 {1868,

(77) 2.445041867 < x < 2145011868,

Therefore the approximation 2.4450-4186 for & is correct in eight

decimal places.

In the following contracted division the dividend is am: lH(l thm
the dividend on the left-hand side of (75). Also, ax Illli(\l}\lfi pos-
sible is carried, and hence each partial dividend i 3 small as
possible, Therefor(, the quotient is less than tho ma(i value of s

In the first step
Q.

00 G4\

2.205 925 [0.000 096125

.
‘,’

L 3 aud
L QY

91\\%7

4288

of the contracted division the *over the O in the fourth decimal
place of the divisor indic aft.os that only thig imuch of the original
divigor is used. The seeond line is 91837 instead of 91836 hecause
1 would have been cm:nod if the complete divizor had been used.

In the second qtaQ\

O 0000041

“l 2.295 925 [0.000 096 125

91 837

4 288
2 296

1 992

the * over the 5 in the third decimal place of the divisor indicates
that only this much of the original divisor is used. The entry
2296 in the fourth linc appears instead of 2295 to insure that the
next partial dividend will be as small ag possible. At each step
an * is placed over the next digit to the left in the divisor, and

only that much is used as a divisor.

division is

The complete contracted
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*EE ¥ 0,00 004 186 7
2.295 925 10000 096 125
91 837

4 288
2 266
1 992
1 837

155 A
138 <\
17 N
16 .
. R

A similar contracted division could be carrieddout for the second
ol the original divisions. Its contraefed dividend would be
0.000096126. At ecach step as little ag p\salble would be carried.
Each partial dividend would be as Lgu mre as possible.  Therefore
ihe quotient would be greater th.;h%hc exact value of & The two
contracted divisions would dif{fﬂ"only in the last column, No
diflerenee in the last columnf&j’an affect the § in the cighth decimal
place of the guotient. ,Thereforc the approximation 0.00001186
for & is eorrect in prght decimal places. The approximation
2.44504186 for z }\\conect in eight decimal places, The exact
value of x is nearer 2.44504187.

The mmumm computation which may be displayed in TTorner’s
method ig the tabulations such as {40}, (45), and (5(), the syn-
thetic sghstitutions to obtain €y and (', sand a contracted divi-
sion, (Q‘he auxiliary computations and inequalities, which prove
thatthe decimal approximation so obtained is correct in the num-

Jiep of decimal places asserted, may be exhibited to advantage.
\ ) The references give other methods of computing o real reot in
decimal form.
PROBLEMS

For each equation on page 93 find an approximation teo each real root correct

in gix decimal places.
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CHATTER 5

INTRODUCTION TO DETERMINANTS

Q"
1. Systems of linear equations and determinants. In Ui chapter
some methods of solving systems of linear cquations wrll‘bv illus-
trated by means of equations in three unknowns, Jir' a general
system of simultaneous linear cquations there umw‘ be any num-
ber of equations and any number of unknowis. M the coefficients
in the cquations are numbers, and if there w6 \11]\ 1 fow equations
and only a few unknowns, there are sewnl simple methods of
finding whether there is u set of \‘Llll(‘\\()f the unknowns which
satisty all the cquations. These mvi‘hods also give all such sets
of values. If the equations have hteral coefficients, or i there are
many equations or many unknm\ ng, these methods may lead to
very complicated resulis, H(mevcr the method of determinants
and mairices leads to vt*ry simple results.  This simplicity is
achieved only after an e\hsmstn e study of the meaning and prop-
erties of d(‘termmam‘b\ and matrices.

2. Solution of cér}am systems of numerical equations in three
unknowns. Althethod of solvi Ing one equation in three unknowns

will now heiHustrated by means of the particular cquation
O
(1) & 2r —y+ 6z = —1,

Thn;ﬁrdvred set of numbers 1, 3, 0 is a solution of (1) because

ST —3+50=—1. In general, if @, b, ¢ is an ordered set of
“umbers, the statement that this set i3 a solution of (1) means

that 2 — b + Be = —1. This fact is also expreszed by the state-
ment that a, b, ¢ satisly (1).

A method of finding all solutiong of (1) will now be explained.
It (1) is solved for g in terms of z and z, the result is

(2) ¥=2x 4+ Bz~ 1,

If the value 0 is assigned to # and the value 1 to z, then y = 6.
Again, if —1 and 2 are assigned to z and z respectively, then y = 9-
106
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[ general, if arbitrary values arc assigned to z and 2z in (2), then
as many solutions of (1) as desired can be found. Now an ordered
triple of numbers which satisfy (2) is an ordered friple of numbers
which satisfy (1). Conversely, an ordered triple of numbers
which satisfy (1) is an ordered triple of numbers which satisfy (2).
Theretore (1) and (2) are equivalent. Tt is also zaid that (2) gives
the general solution of (1) for y. Al solutions of (1) are found by
the method of using arbitrary values for = and 2z in (2). Sinets
each of the quantities « and z takes infinitely many values inde-
pendently of the other, it is said that there is a doubie znfm*a&y of
solutions of (1). O

It is to be noted especially that (2) expresses ¥ as @ ) wiar func-
tion of  and z. This function is ¢ nen- humoqr’ncﬂus function of
these variables hecause there s a term which un\)h res neither x
nor z.

A method of solving » system of two lm&}r equations in three
unknowns will now be illustrated by menns of the particular
equations O v

@+ 2 — 3= =
@)

2x — y—'{—*z———-.

The second equation in (3) 13 equwalent to the equation obtained
from it by multiplying both sides by 2. Hence (3) are equivalent
to oiw?

N\
@ ,\x+2y—3z=2,
4 W\

NNO 4z -2+ 2:= -8

Again, tha\s}t (1) iz equivalent to the set (5) obtained by using
the firgf\ewuation in (4) as the first equation in (5), and the sum
of thé\two equations in (4) as the second equation in (5). Hence
(3)\are equivalent to

T+ 2y —3z =2,
")
5z — z=—4
Now {5} are equivalent to
z = bx + 4,
(6)
2—z+4+ 3z
¥Y=—""F"

2
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and henee to

z =55 + 4,
(7)

y=7r+7.

The particular solution of (3) which isx obtained from (7) by
assigning the value 0 to z is 0, 7, 4. Another pirticular solution
18 1, 14, 9. Bince exactly onc quantity, namely &, in {7) may he
assigned infinitely many values, there is a single infinity of solu-
tions of (3). It is to be noted especially that cqualions (M have
been solved for y and z in terms of x, and that the ge nrpdd solution
(7) expresses each of y and z as « Hnear, non»-hrmmr,u nfOws function
of z. Equations (3) could have been solved for a mul ¥ in terms
of z, or for x and z In terms of y. Each of the 50 *m('t}uuh rives all
solutions of (3), by assigning arbitrary \d.lllt“b\t() the trunsposed
variables.

An important fact about some 8y qte;n\ af two linear cquations
in three unknowns is illustrated by tht\equ‘ltmna

:c+2y—'3z=2,
(8)
—33,—6_?;—{-03:7.

The first equation in (8) mTl b( designated by (8, and the second
by (82). A particulap@elution of (8,) is 1, 2, 1. This sct is not
a solution of (&) begﬁuae —31—-06-24+9-1 =7 It will now
be proved that th@w 18 1o triple of numbers such ‘rlnt each equa-
tiom in (/) s mhsﬁt d by the triple. This will be done hy showing
that, if a, b,\c arc three numbers swhich satisfy (8}, then there I3
a contradxgtlon If a, b, ¢ satisfy (8), then @ 4+ 2b — 3¢ = 2, and

-3 "‘ﬁ‘l} + 9 =7. Multlphcatmn of the first of these equa-
tion§\by —3 shows that —3a — 66 4+ 9 = —G. Since —6 # 7,
there 18 4 contradiction of the sccond equation. This system (8)

(8 an illustration of a system which has no solution. By definition

a system of equations is fnconsistent if there is no solution of the
system.  The equations are said lo be snconsistent.

A method of solving a system of threo linesr equations in three
unknowns will now be illustrated by means of

T+ 2y — 32 =2
6r— v+ z=1.
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Since the (irst two equations in (9} are precisely the equations
(3), equations (9) are equivalent to

2 =0r + 4,
(10) y=7zx+47,
br —y+2z=1
Henee (9) are equivalent to N\
z = Dbz -+ 4, L\
(11) y=T0+7, | O

Gz — (T2 +7) + (Br+4) = 1.

\

Hence (9) are equivalent to
A

(12) =1, y=T71417, z.*=\5-1+4.

Hence there is one and only one soluhon of (9), namely 1, 14, 9,
It is said that cquations (9) have a) umque solution.,

The system of threo equahons formed by adjoining to the sys-
temn (3) the equation 2x + Qy, — 13z = 11 is an illustration of a
system of three equaﬁons«mth a single infinity of solutions. This
Is lrue because, if (7)), zm& substituted in 2x + 9y — 13z = 11, the
regult is 2z + 9(:1‘\-{§") — 13{6z 4+ 4) = 11. This last equation
is true for all values of 2. Ilence 2p -+ 9y — 13z = 11 is satisfied
by all 5oluhonb of (3).

The systefn oi three equations which is lormed by adjoining to
the systemd, ) the equation —3zr — 6y + 92 = 7 is inconsistent
hecauseN$} are two of these equations and it has been proved that
{8) a‘;ﬁ, inconsistent,

“The&e llustrations show that it is not the number ¢ of equations

. Wh:lch determines whether the equations are inconsistent, and, if
they are consistent, how many solutions therc are. Later it will
be explained precisely how these facts are determined by the co-
efficients of the variables and by the constants in the eguations.

Each of the equations in the system

3z — 23,! +z= 0}
(13)

i
o

r+ y—z
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is a homogeneons equation, since the constunt in the equation is
zero. Now (13) are equivalent 1o

—2y 4z = —3z,
(14)
y—z= —x,
and hence to
—y = —lr,
{15)
y—r= —u A
Therefore (13) are equivalent to A
e
"\
W= ':I;I:r :s )
(16) A
=4 \’

z = ba. R

These equations give the general solution A }?‘1\3). From them ag
many numerical solutions s desired canNe fourdd, Thus 0, 0,0
is a solntion; 1, 4, 5 is a solution; —2/5%8%, — 10 ix & solution. The
solution 0, 0, 0 is called the zeray f;}{fc’!ion [t i+ also called the
trivial solution. 1t is fo be noted yipecially that (16) cxpresses y
as a linear homogencous fmw{?wk nf z, and z as a [inear homogeneous
Sfunetion of x. In this rcap@‘c{ the ‘-:011]1',101’1 (16) of the homogeneous
equations (13) is to het c(mtlfistvd with the solution (7) of the
non-hemogeneous eq,{'itmns {3}, The equations (13) have a single
infinity of solutiops,\
Ifz =0, eq&@ﬁbns (16) can be written in the form

N 1 4
PY; y = -,
::\;,,: &* 1
(17<\..
N/ p -
Q :_5
’..\’5{' x 1

\\ “ Thus equations (13) have been solved for the ratios y/x and z/2.
Another way of writing (17) is

Il

o |
—

(18)

U

e | o
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TIence the golution of (13) can be written

as) ©_y_:
1 4 b

The stutement that

(20 Tlylz = 1:1:5

means, by definition, precisely (19).

The second illustration of homogeneous equations is O

3 —y+2 =0, O

21) % byt =0, O

—2r+y+2: =0 ,~.' 3
These equations are equivalent to \\"‘\\ N

x—y+ 22 =0, ’\\’;
(22) 3¢ +32=86°
—x + 4= ‘(ﬂ,
and hence to ‘j.:';
T — g2z =0,

(23) x WY oz =0,
A& =0

ENJ
THenee (21) ave eq11i"x\t cnl to
oY e-—y+2=0,
(21) "\\ 5z =0,
\:"; e — 4z = (.
SO
’1;11{1&:‘(21) are equivalent to

\’tﬁgj x=0 =0 z=0

Thus (21) is an illustration of a system of homogeneous equations
for which the zero solution is the only solution.

There are three rules which may be used in the discussion of a
system of numerical linear equations. These rules were followed
in each of the preceding illustrative examples. Thus, in the dis-
cussion of (3) there is a sequence of equivalent systerns (3), (4),
(5), (6), and (7). The systems in this sequence illustrate the first
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rule, which 1s that the number of equations in cach system of the
sequence s the number of equations in the original syston.

It will now be explained how the sequence (3), -+, {7 also
Mustrates the sceond and third rules. Thus, 1) 12 obtained from
(3) by multiplying (3;) by the constant 1 and {32} by the constant
2. Then (51) is (4;), and (5y) is obluined by using {1} in () to
eliminate 4. Again, (6) is obtained from 5) by nuiltiplying (54)
by the constant 1 and (5,) by the constunl. 5. Then (7)) 15 (6},
and (7;) is obtained by using (6,) in (6. to eliningt e S The
second rule 3s that cach equation in o system muy he r¢blaced by
A non-zero constant multiple of itsell.  The third rijeis “hat one
cquation is used in each of the other cipntions tpseliminate rom
these other equations a seleeted (lixed) variahleafOfen the second
and third ruleg are used simultancously. \\

If the first rule is always observed, andabhic second and third
rules are used fo eliminate vaviables instirn without introducing
again those already eliminated, then 'éir.t}wr a =olution of the orig-
inal system or a contradiction is g)‘]'imine(l. If o contradiction is
obtained, the original cquatioilrj Whe inconsistent.

“ N

PROBLEMS

For each of the followi ng s}*siemﬂ show whether the equations in the system
are consistent or incongifient. If the equations sre consiston t, show that there
is 2 unique selution, ohfind the general solution and state how many solutions
the system has.

L 8z — y4ol= 2 2 3¢+ dy 4 4z — 15,
T+ N2 = g T4 4y 22— 7,
b :t}y"ii- dz = —3. &+ 20y 4 Bz — 19,
3.,\\:5;453;—2.2: 7, 4 2424 1= 2
A — 2+ 2= —11, 2v - he - 26 = —1,
."\'.:’3;5—1- ¥ — 382 = 8 —~30 — Ta 44 = 2
\M\;““& 41 + 2r + 2w =0, 6. Tv—7:— =0,
¥+ v— w=0 100 — s — 4t = 0.
T30~ Bs+ ¢ = —3 8. no— By 4 G = 0,
v+ 23 — Tt = —1. ~2u 4+ 384 w =17,
3u—T7o 4+ w=1.
9. 3z 4+ 2 — 2= -7, 10. 2r — 5y — 382 = 1,
gt y— 2= -2 7o+ 2y + 42 = 1,
2-~3y+Tz= 2 —z 43y — 2= 11,

et y+ 2=
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11w — 2v 4 3w =1, 12, 3u 4 v+ 2w = 2
% =2y 4w+ 1, 2u 4+ To — B = 14
13. v+ s -3 = 7, 14, -2z + 6y + =z= 12,
20 + i = b, —x+2y+ z= 5
o458 — Tt = 15, 4r 4+ y — 13z = -2,
v —ids 4 2{ = —3. z+ y— 4z= 1.

3. Systems of three linear equations in three unknowns. De-
terminants of order three. Determinants of order two. Matrice§, ™
In thig section systems of three linear equations in threc unl\no\nw
are considered. The equations have literal rather than numeucal
gocflicients. The equations are given the notation L

a1t + taa + ez = Ky, (O

{26) Go1¥1 1 @ops + daa¥y =

Y )

fa
N
83171 + QasTs + a%%a\ K.

A

Ik =0k =0,k =0, then thi_. Lqmtlonfs are homogeneonus.

In (26) 1t Is assumed that thele are indecd three variables in
the equations and three E'C]l]"l.tlolh in the system. Thix is accom-
plished by the assumption thilt at least one of the numbers a4,
a1, 31 18 not zero, that gt Yeast one of arg, g22, as2 I8 DOL %ero, and
that at least one of, aﬁ: W33, gz 15 not zero, and by the assumption
that at least one of\@i1, ays, 1y 13 not zero, that at least one of
@1, oz, Ouy 18 1ot zero, and that at Jeast one of ag), aue, agy is
not zero. A&/

There m'\['t)ul parts to the discussion. In part I it is assumed
that thf-\e is a solution of (26). Then certain vesults are olfained
in sufeession. These results are necessary conditions for the exist-
enee of a solution of (26) becuuse they follow from the hypothesis

’““hhat there is a solution. The fundamental definition of a determi-
\I{&L]’lt is illustrated in part I. The discussion in part T is preliminary
to the proofs of theorcms 1 and 2 in part II. The proof of theorem

3, which constitutes part 111, is based on the discussion in part I
In part IV the diseussion of the possible eases in the solution of
equations (26) is completed. Some of these vesults are not proved,
They arc merely stated as illustrations of general theorems to be
proved later. These statements arve simplified by the use of the

new idea of matrix,
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In part I it is assumed that there is a solution of (26). Thuys
there arc three numbers ¢, e, ¢ such that ’

@116 + 12 + @y = hy,
(2?) 101 + dpaCs + tgney = ko,
I317] + (Tyaiin —f‘- (hyatty = ]C;;.

The distinetion between (26) and (27) is to be noted especially.
As explained in section 1 of chapter 1, equations (27) sihbe that
the ordercd set ¢y, ¢, ¢3 i% a solution of the o<|11:|.f.'|m1’k£‘62(3). In
part I it s eustomary to use (26) instead of (27), wiih the under-
standing that 2, zs, 24 temporarily mean valuey ‘f‘,{l. tlie unknowns
which satisfy the equations, AN

T part I equations (26) will be used ins’m}ﬂ' of (27), with this
understanding. Thus in part I the leffhind side of (26,) iz &
number, and this number is indeed jJ*;QrIumhnr k1. Then it fol-

lows that -
(28) 01102871 + Q1a8o3a = G1alozay = kiden
X

is true. Similarly from (Z@i'it“follows that

(20} (1212137 j";!;;alaﬂé + assarpen = laayy.

Now by subtra.(:t’igngof (29) from (28) therc follows the equation
(30) (anaza’ ‘—\&\21‘&13)551 T (G12823 — z0a14)ry = (kyoy — kottys).

Since (30), Tsilts from the hypothesis that there is a solution of
(26), (3UNIS @ necessary condition for the existence of o solution of
(26 -(Stnilarly, if (26,) is multiplied by ays and from this product
there Is subtracted the result of multiplying (26,) by a5, there is
Gbitained the necessary condition
"\ o
\M\; B0 (aness — agyay3)r; + (212855 — azoa13)ry = (kiaag — Esas)-
In (30} the complicated cocfficient of x; will be designated by bi1s
the coefficient of x, by b3, and the constant term on the right
by dy. Thus

by = G110y — a3,
(32) b12 = f1afpy — Aoally 3,

dy = kiags — r’ffzﬂlg‘
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Then (30) becomes the more simple equation
biyeg + biprs = d).
Similarly, by introducing the nofations

by1 = a@yytizs — 31813,

(33) boe = @yauy; — Ogottyy,
N
dy = kiaag — kyo, A
. : : ¢\
equation (31) becomes the more simple equation ~\
\V
barey + bagzy = d. :”}s

Thus, if (32) and (33) are used, then the two neces@ry conditions
(30) and (31) beeome the more simple equatinagy’

by + bypze = d}jz\\l
borz) + E?223!72 ;‘4313

),

(34)

A single necessary ('olldltlonhm}olvlng only z;, will now be
ohtained from (34). Thus, il %I) is multiplied by bea and (345)
by b4, and if the latter lusul'tpus subtracted from the former, then
the result is

(35) {b1aba ‘—’thbm)&ﬁ dibyy — dabyg.
&S

This equation is@xpressed in terms of {he original letters by using
(32) and (33),(n the result the coefficient of z; is

(36) (agx@“; O21013) (@12833 — G3a013)

{\ : — (enass — @a1213){012823 — G22013).
Afho the constant term on the right-hand side of (35) becomes
\(37) (krags — kathis) (012083 — Auptia)

— (k1oss — Faars}{aiz0zs — Cuatrs).

If the products in (36) are expanded and the result is simplified,
ther (36) becomes

(38)  @a13{ty10900as — (11032023 + 821052013

— G21012033 + Cz1¢12093 — Gaideatia).
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In 5 similar way it could be proved that (37) becomes (39). But
this is more easily proved by noting that (37) may be obtained
from (36) by veplacing a11 by k1, @21 by kg, snd a3 by ks If
these replacements are made in (38), the result is (39). Ilence
(37) becomes
(39) azz(kraa0ss — kittaz6az + Katiaatiz

— koayattsy + kattiaten — Eaoisotlis).

The second factor in (3]) is so complicated that a new symbol

iz introduced to designate it. The symbaol ig 3 N/
& W
11 sk} a1g A3
N
(40) 21 G2z Ga23 N
\.\
d31 a2 i3z N\

This symbol means, by definition, precisely th.P\sum
N
(41)  ap1tuedss — U11032003 + Cmdzetiz W\
— Gy 0128382 Q31012028 — Og122C13-

Two simple rules by which the expréddion (41) can be writlen down
directly from the symbol (10} wi[,llb(':' explained later. The number
(41) is called a delerminant. . THe symbol (40) is called the symbol
of the determinant (41). Ehe determinant and itg symbol are of
order three becuuse t-hg ‘are three rows and three columns in (40).
The symbol (40) may“be called a determinant if no confusion
results. 'The ninestwmbers a1, Gz, d1s, Ga1, o, Ozs, 031, G2, 452
from which the:ﬁumber (41) is formed are called the elements of
the det@rmiﬂ@% The symbol (40) and the number (41) will be
dcsignate@(bj-’ D). Since the nine clements in (40) are the eocffi-
cients.c}f the unknowns in (26) and are ordered as those cocflicients
are( ordered in (26), D is called the determinant of the coefficients
o 1),

If @14, gy, @z1 in (41) are replaced by &y, &y, ks respeetively, the
second factor in (39) i obtained. Therefore the second factor in
{39) is & determinant. iz symbol is

k1 012 i
(42) ke Oz o3
r"C 3 [££:3 fd3a

;This determinant and the symbol {42) for it arc designated by D1,
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for a reason which will be stated later. Thus 73y is the number
(43)  kiaogtas — kiazaten + Kalazans

— kawtioasy -+ Katiaas — Katastis.

By (3%), (39), and the notations D and D; for the numboers {41)
and (43) respectively, the necessary condition (35) becomes

(-1-4) a-lgDJ'-l = EL];J,D].

In a similar manner two other necessary conditions involving\
: N

a1 are obtained. "They are AN
. NS ©
(45) aggDey = agylh, \ >
N
(46) agalDr, = agaDi. K2, N

. m\\.
Now, by the hypothesis which follows (26), cither a3 = 0, or
oz # 0, or azg # 0. Henee the necessury cond@i'on
A

(A7) Dy =Dy L&Y
is obtained from at least one of the qphﬂiiions (44), (45), (46).

There iz a neecssary condition ix}.x’f:olving x5 which is similar to
(47}, and there is a similar onesfpr 23, They are proved in the

%

same way. To state them, s and D5 are defined by

a1 k1 a3 a1 2 kb
{48) Dy =1{an k{\"'ﬂ% , Da=lan @z Kk
g Nea flgy s &3z ks

The symbol fom Dﬁ is obtained from the gymbel (40) for D by
replacing a-lg,t\;(}_}é_, age respectively by ki, ko, Ks; alzo the symbol
for Dy is bj%ﬁhcd from (40) by replacing @3, 623, 033 respectively
by &y, ;i?z',\kg. Il these replacements are made in (41}, it is found
t;hafr..\w N

. \ Y4
‘Qg‘) Do = ayrhatss — ariksoes + Goikatis
— agikiags + aaikiaes — @sikats,

ritpahs — @i0asks + an8s2h

(50) Dy

1l

— ag1019ks + Gzitazky — s10azky.
Tho three necessary conditions are therefore

(51) Dy = Dy, Dy = D, Dzy = Dj.
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The first rule by which the expression (41) can be writien
down directly from the symbol (40) is important because It is
5 simple illustration of the general definition of a determinant.
If 7 designates the number of rows and columns in the symbol
of o determinant, then » = 3 in the determinant (40). Virst,
there are 3! terms in (41). Next, the expression (41} is written
in the form (—1)%a11009a33 + (— 1Y a1183200s + (—1)%anagsars
+ (=D'assmzass + (—1)agitiaass + (—1)*@s1022013. Therefore
each ferm in (41) is a power of —1 multiplied by a litersl prodact ™
of three factors. In each term the second subseripts are ipthe
natural order. The first subscripts in the six terms are: 4, ?, 3;
1,3,2; 2,3, 1; 2,1,3; 3,1,2; 3,2, 1. Ttis fo be noted especially
that these are precigely all the arrangements of the nunthers 1, 2, 8.

The correet exponent of the power of —1 by \\-;hil;’h’ each literal
produet is multiplied is determined, when the gaeond subseripts
are in the natural order, by the particular arrabgement which the
first subscripts form. The rule for determaidmy the correct expo-
nent will now be cxplained. In the gecénd term (—1)'aq1aa00zs
the first subseripts form the arrangement 132, In this arrange-
ment the number 3 precedes the 'Im'm‘ber 2, and 3 is larger than 2,
This fact is also deseribed by saging that in this arrangement there
is one ¢nwersion due to the funibers 2 and 3. Sinec 1 is smaller
than each of the numberf\> and 2 which 1 precedes, there is no
other inversion in fhi{ Arrangement. Therefore the number of
inversions in the a}-n\}gement 132 is 1. This number 1 of inver-
sions is the cxpohent of the power of —1 by which the literal
product g aspady’is multiplied to obtain the term (—1)'a;1aasdss.
Again, in thesthird term (—1)2as1a32053 the first subscripts form
the arrangément 231, In this arrangemoent there are 2 inver-
sionga’ This number 2 of inversions I8 the exponent of the power
of . &1"by which the literal product ez a33¢.15 is multiplied fo obtain

.'ﬂée ‘term { —1)%ap 040015, Similarly, the exponent O in the first
term is the number of inversions in the arrangement 123 of first
subseripts,  The general rule ig that the exponent of the power
of —1 by which the literal product is multiplied iz the number of
inversions in the arrangement of first subscripts, when the second sul-
scripés are in the nofural order.

Now the first rule for writing down the expression (41} can be
stated simply. The determinant (41) of the third order ig the sum
of 3! terms. Tach term is 2 power of —1 multiplied by a literal
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procuct in which the seccond subseripts are in the natural order.
The exponent of the power of —1 is the number of inversions in
the arrangement formed by the first subseripts. This rule is
mercly a restatement of (41). Therefore this rule is a definition
of the determinant of the third erder whosce symbol is (40). This
rule iz stated because of its theorctieal importance. In praclice
the following rule is used.

The zecond rule for writing down the expression (41) direetly
from the svmhol (40) is easily stated if determinants of order tw o
are defined. Determinants of order two could he 1ntr0ducmd‘{n
solving two lincar equations in two vnknowns. This is not\dune
beeauze determinants of order two are not complicated e\prebbwns
and no simplifieation results when they are uscd in Salvi ing two
linear equations in two unknowns. On the uter"h@nd determi-
nants of order two simplify the practical use of\bhedefinition (41)
of the determinant whose symbol is (40). I &, b, ¢, and d are
letters which represent numbers, then fhe (@ermmant of order two,

whoze symbol is AN
a ¢k~

(52) B . d” 3

iz the number AONY

(53) ~ad — be.

Now (41) can be’\wﬁ,t,\en in the form ai1{asetss — Gaates} —
asi(d1otizy — Gy2013) by (@1stzs — azotys). Hence (41) is in fact

2 13
tag a3

2

Ay, Bz ! — ay
faz 33

dap\J day |
In this ¢ 3re:Q|0n the multipliers ay1, da1, Ga1 arc the elements n
the firsp column of (40) and the signs alternate. The deferminant
of 01((1@1‘ two which is multiplied by @1, in (54) is cbtained from

thegymbol (40) by deleting from (40) the row and column in
Which aq; stands. The determinant of order two which is multi-
plied by agy in (54) is obtained from the gymbol (40) by deleting
from (40) the row and column in which as gtands. A similar
statement is true for the determinant which is muitiplied by as
in (54). The expression (54) gives a practical rule for writing down
the number (41} from the symbol (40}.

Other facts about determinants of order threc will appear as
specinl cases of rules for determinants of order n.

(5-]:) iy + a1
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PROBLEMS
. 2 2 1 3 1 3
1. Evaluate each of the deter;nnrm.nts:]‘ o4l o4l 9 ‘
2 1 3
2. Evaluate the determinant | 5 2 2 |, using (54) and the results of
1 1 4
problem 1,
3. Evaluate each of the determinanta:
g 27! 2 1] ]2 1 ‘ QO
[ Sy — Py "
| -t 1i7, -1 1|3 2 O\
: 2 l "o\\ o~
4, Lvaluate the determinant | —1 3 21, using (! 34) and the results
2 -1 1
of problem 3. ~\
’ x oy 1
b. Using (34), show that | 1 3 1| iz the flmr:t,lon 2z 4 3y — 11.
: ‘ 4 1 1 N
ooy A
Hence show that [ 1 3 1 | =0iz an aquaﬁaﬁ of the straight line which
14 1 1 N \/ :

passes through the points (1, 3) and (4, U
6. Show thal, i (a1, &) and (us, bgl ~m> two distinet points, then

z y: 1
i, lh 1]|=0
) b 1

¢ N/
iz an cquution of -the s??sﬁht line which passes through these peints. If
(25, by) 13 & point dlut)uct from each of these pomt& and if these three points
ag F)3 1
ure collinear, ﬂm\lu ta B 1| =0, Prove that, if this determinant is
\s | 27 by i
Zero, thenikt“ae three poinls are collinear.

* | 2 ¥ 1
'Z.\bhow thatia & is the function —mz +y + am — b, Hence
& \ w4 T 0 i
}hem that an eguation of the straight line which pagses through the point
z Y 1
(@, b) and hasslope s 15 | ¢ B 1| =0
1 m 0

8. Let (@, by), (no, fe), (az, bs) be three distinet points, Prove that the
ares of the triangle with vertices at those points is one-half, or the negative
lm b 1
of one-hall, of the number * a6 1],
i 153 bg ]. ]
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Theorem 1 and theorem 2 constifute part T1

TeaorkM 1. Let It be the delerminant of the coefficients of the
ihree variables i the three Tinear equations (26), and let Dy, Dg, Dy
be defined by (42 and (48). If D # 0 and if there is a solutton of
these equalions, then that solution is the vrdered iriple Dh/D, D,/D,
Ds/D.

Proor. If (26) have a solution and if D} > 0, ithe necessury
conditionz (51} imply that : ’

Dy D Dy O\

o a=p mTp T o

TaeoreM 2. Le D be the delerminant of the coeflicients of the
three variables in the three lincar equations (26), and b T, Do, By
be defined by (42) and (48). If I = 0, then PuEY, Do/Dy D3/ D
are nwmbers, and this ordered triple s o solu};.ig@;ﬂf (26).

. Tt is to be proved that oy (D1/D) —lf'qo\;(DQ/D) + a13{D3/D)
= ky;. This will follow if it is provc.d:ﬁhzit

{56) ay i + awhe :{"";I’llei = kD.

1f the expressions (43), (19,430}, and (41) arc used for Dy, Da,
Da, and D respectively, agtl the products and sums indieated n
(56) are computed, it %ﬁi"f(;t\l]'_ld that (56) is true. In the same way
it i3 proved that t-h'm\\tﬂple is u solution of the other two cqua-
lions in (26). It ig%0 be noted that the hypothesis of part Lisnot
wsed in this p;“oiif’ “This completes the proof of theorem 2.

THEORP;&(Z%““ Fet D be the deferminant of the cogfficients of the
three vapiables in the three linear equations {26), and let D, Ds, Dy
be deﬁ-i'a:ed by (42) and (48). If D =10 and af least one of the num-
EZ?'ES<D1, Dy, Dy is not zero, then there is no solution of (26}, and

() are inconsistent.

The proof of theorem 3 constitutes part IIL. Tt is assumed that

(57) D =0, and at least one of Dy, Dy, Dy is not zero.

The theorem will be proved by showing that, il there is a solution.
of (20) und if conditions (57) hold, then there is a contradiction.
By part I equations (b1) arc true If also D = 0, then [}y = 0,
Da— 0, Dy = 0. This contradicts the lasb part of (57).
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PROBLEMS

Tse theorems 2 and 8 to show that the equations in each of the following
gystems are inconsistent or have a unique solution, Tf the solution is unigue,

defermine it.

1.8z — y+Te= 2 2. v+2%4 t= g
r+ y-22= 1, 24 5y — 2 = —1,
S¢ 4 3y + 4z = —3. 8y —Ts+ 4 = 2
3.%x+2% - 2= -7, 4. u—hy 4+ 3w =0,
x4+ y— 2= —2 ~2u-t+3v+ w=71
x—3y+ 7= 2 3u~Tv4+ w=1 N o
K
B. 2v — s+ t=0, 6. e+ 2 — 2= 3,:\ ’
To 3z — =0, 2r + 3y + z=—l.,~"~’
¥+ 5s - 2L = 0. —die — Dy — bz -——“(2:‘:
7. x4+ 199 +%= 1, 8. 2u+ v — 5w =0V
22— y— z= 0, w + To — w'\=0,
O — 24y — ¥z = 13, du + 3 4 v = 0.
9, 2u+t vt+w= 86, 10. x—<q;—7z=2,
34+ —w=-2 —&{3 gy 432 = 5,
—u+ v4+w= 0. . Tatdy+ z=1.
o4 s+ =1, 8% 3y — 2= 6,
20— s+ B=17, o8Nz — Ty +382= -9,
By — By + 14 = 2. AN Sz 4+ y+22~= 4

Part 1V is devoted to "éfatement, without proof, of facls for
three linear equations ip{thice unknowns which are a speeial case
of gimilar facts for. ah\ﬁrbitrary number » of unknowns and an
arbitrary number, g of equations. These facts will be proved in
chapter 7. Inpart [V it is assumed that

(58) D=0, D=0, Dy=0, Ds=0.

Thus the re sults to be stated in part IV, and the results in theorem
3, eggip’lete the diseussion of the case D = 0 for equations (26).
Simge’ theorem 1 and theorem 2 completed the discussion of the
tngé D 5 0, all the possibilities for cquations (26) will have been
considered. :

If the hypothesis of part T is used, (51) are necessary conditions,
If also (58) are assumed and used in (51), the true statement

(59) 02y = 0, Orzg = 0, Ox3 =0

results. Bince (59) gives no information about z;, ., x4, part I
18 not used in part IV, In part IV equations (26) are considered

N\
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with %), o, ®3 a3 variables. This is the way in which (26) were
interpreted in the slatements of theorems 1, 2, and 3. It was only
in part I, and in those preofs in parts 11 and IIT which used re-
sults of part I, that x, 2, x5 were considered temporarily as con-
stants, ag explained at the beginning of part 1.

A set (60) of three numerical equations will be given which
satisfy (58) and which have infinitely many golutiong. Then a
set (67) of three numerical equations will be given which satisfy
(58) but which have no solufion. Henee it will he clear that e M
methods arc needed to complete the discussion of the set (26), of
cquations for which (58) arc true. These new methods, \Gi?l‘})e
ilustrated by means of systems (60) and (67). g >

1f (40), (42), (48) are used, it is found that

z 4 2y — 32 2, .'“:.\\

I

(60) % — y+ 2= BN
Jo — Ty + 92 EA3

satisfy (58). Next it will be prmjgd;t-lfat each solution of the first
two of these equations is a solution of the third equation. Tt is

*

obvious that
61) 4r—Ty+92+ 13“,:1"-‘_2(:0—!—23;—32 —+32c -y+z+3).

Therefore (61) i3 traeMfor all values of 2, y, 2. Thercfore a par-
ticular set of valied of z, y, # for which each quantity enclosed by
parenthescs oh\fHe right-hand side of (61) is zero is a set of values
for which theTeft-hand side is zero. Hence a solution of the first
two of BQ;l\f;f-ions (60) is a solution of the last of these egquations.
Now b’x\ (3) and (7) it is true that the first two of equations (60}
hastesnfinitcly many solutions, Hence the system (60) is a system
\"W;it}i infinitely many solutions.

"T'he proof of these facts about the solution of (60) is simple he-
eause the number 7 of variables is small. 1f % were greater than
three, or if the number ¢ of equations were greater than three, not
only the proof but indeed the statement of the facts might be
complicated. These statements and proof are simplified by the
use of the ideas of matrix and rank of a matrix. These ideas will
now be illustrated with equations (60). The coefficients of the
variables and the constants on the right-hand gides of the equa-
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tions In (60), when written down in the order in which they ocecur
in (60}, form an arruy
1 2 -3 2
(62) 2 -1 1 -3
4 =7 g —13
This array is called a magriz. A matrix is not & determinant be-

cause a matrix is merely a reetangular (perhaps square} array of
numbers. In (62) the smaller array

1 2 ¢ \A
(63) 2 -1 1] O
£ =7 9 A\

i3 formed by the coefficients of the variables, The matrix (63) is
called the coefficient mairiz of equations (60). Thé‘dotation ¢.in.
will be used to designate the matrix (63). The‘matrix (62) is
called the augmented matriz of the equationg 460Y. It will be des-
ignated by the notation a.m. N\

The matrix (63) suggests the deternfthant D in (40), Indeed
any square matrix suggests the (‘]e’ger'miﬁant whose clements are
respectively the clements of the mabrix, The matrix is merely the
ordered array of numbers. Its :’déterminant is a number, The
am. (62) suggests four depm'nﬁha.nts of order three, These are
the determinant D and m<

&)
‘1 9 2%kNT1 3 2 2 -3 2
6H) |2 —1 S, 12 1 =3, | -1 1 -3
4 -7 &3 4 9 _13 -7 9 —13

The first d@ﬁ@}hﬁnant in (64) is Dy for (60), by the last part of
(18). Thesecond determinant in (64) is not quite Dy, and the
third deferiinant in (64) is not quite D) becanse, by (48;) and
(42) Q8"

\™ 1 2 -3 2 2
(éﬁ) Dy=|2 _3 T, ;=] —3 —1 1

3

4 —13 9 —-13 -7 9

Also it can be verified by (54) that the third determinant in (64)
equals Iy in (65) and that the second determinant in (64) cquals
—Dg in (83). Hence the fact that {B0) satisfy (5R) is equivalent
to the statement that each determinant of order three which can
be formed from the a.m. is zero,



TEREE LINEAR EQUATIONS 1N THREE UNKNOWNS 125

In (62) there are many submatrices which have two rows and
two columns. For cxample, the first two rows of (62) yield the
following submatrices:

1 2 (1 1 2

2 =11’ |2 1] 12 -3’
[ 2 -3 2 2 -3 2
-1 0 -t =37 |1 =3

Any matrix which has two rows and two columns suggests a de<
termyinant of order fwo. For example, the first matrix abeye
. ol e ¢\
suggesis | | PR

" 2 « M
(6G) \

S,

1 N\

Ry (52) and (53) this is the number —5. Therefors In (62) cach
of the determinants of order three iy zero, and\ab leagt onc of the
determinants of the order tawvo is mot zere, Fhis is the meaning
of the statement that the rank of (62} ig ta\fo.: “In general, the rank
of @ matrix is the number of rows in thnt]ai*gcst non-zero determi-
nant which ean be formed from the gnalrix. The rank of the a.m.
will be designated by 7. N
The cocflicient matrix (63) has a rank, This rank will be desig-
nated by ». It is especially to be noted that the cm. is & sub-
matrix of the a.m. Hence» non-zero determinant which can be
formed from (63) is @oti-zero determinant which can be formed
from (62). Thush= 1, = 2. Alzo, (66) i3 a non-zero determi-
nant of the seq@d order which can be formed from (63). There-
fore r = 2, ’SzQ'd'?'a_ =9, Tt will be proved later for an arbitrary
number 0% Yariables that, if r, = r, then the equations have a solu-
tion andMhat, if alse v < n, then the equations have infinttely many
solutfons. Tiquations (60) Hlustrate these facts, since r = 2, Tu
N\UThese facts which equations (60) illustrate are to be conirasted
with the facts which the equations

x4 2y — 32
(67) ~3¢ — by + 9
2x—[—4y—6z=5,

illystrate. An s-rowed minor of & matrix is, by definition, a deter-

1
o

Il
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minant of order s which can be formed from the matrix. All the
three-rowed minors of the a.m.

1 2 -3 2
(68) -3 -6 8 7

2 4 -6 5
arc zero, Hence (67) satisfy (58). All two-rowed minors of the
c.m. -

1 2 =3
(69) -3 -6 9 '.\:\
2 4 —6 7\

are zere, Therefore » = 1. There is at least one nqpeé’é}.’o two-
rowed minor of the a.m., namely, the determinant fgl’{hed by the
four elements in the upper right-hand corner of -#§%)° Therclore
re = 2. It will be proved later for arbitrary acend arbitrary g
that, if r < r,, then the equations have no a@h‘k‘ﬁm. This fact is
illustrated by (67) because the diseussion: gf}e(’]’uations (8) showed
that the first two equations of (67) havep sclution and henee the
gystem (67} has no solulion. "jf; .

The solution of equations (9).ean be discussed by mcans of
ranks. For thesc equations 233, v, = 3, n = 3. Thus these
equations illustrate the factshat v, = 7. The equations have a
unique solution, by (12). ~Fherefore the solution of (9) illustrates
the theorem which will ho*proved for arbitrary » and arbitrary ¢
that, &f v, = r and P = n, then there is one and only one sobufion,
LEquations (9) dg @bt satisfy (58), and they do not satisfy (57),
2
N PROBLEMS

Find th’g::ra.nks rand rg for each of the following systems of equations. Tse
the faetsiconcerning ranks which have heon stated in part IV to determine
W}n‘}tl;er the equations in each system are inconsistent or consisteni,  Lf they

aré\gonsistent, determine by raaks whether there are infinitely many solutions
or only one solution,

1. bz 43y z = 18, 2. r— y+ z=13,
—7r — 2y 4+ 2 = 10, bz 42y — 2z = 7,
92 42y — z = 5. —32x — 5y + Bz = 32.

3. w=+254 = 2, 4. 2w — 5+ t= —3,
w4 s — t= —3, —3u 4+ 242t = 3,

~13u 445 4- Tt = —11. Tu - 53 + 9 = 14,



THREE LINEAR EQUATIONS IN TTIREE UNKNOWNS 127

B. w— ¢ —2m=20,
2+ By —dw =1
3u - 17y — 8w = 0.

7. z— 294+ 2= 1,
I — by + 3z = 2
—2x + 4y — 2z = 11.

9.7+ v+ 2= 8§
20— 3y - = 1
4w 4+ 17y + 72 = 11.

11, Tut4s — £= 1,
2u— 82t = b
—B3u 4~ 25 4 5t = 17.

6. 3u— v+ w= 1,
2u4+ 44— w= 7,
Su 4+ 172 — Sw = 11,

8 2r +3y -2: =10,

10.

12.

x4+ Ty — 52 =1,
4z +2y4 z=0.

ud v—2w= 4,
B 420 —dw = 7,
—3u — v+ 2w = —4
w-— bi+ 2t =3,
4y — s+ t=1,
—8u —1Ts + 50 =7.
A\
o
&(/
N
4
N
/,\\/
NS
¥



CTTAPTER 6

DETERMINANTS ~
1. Determinants of order four. Determinants of order famzsal‘e
numbers which oceur in the solution of four lincar Pquzvbions in
four unknowns. This will be explained by means of th(y Pquatl ons

andy F apxe + digEs + G4z = “1\\
- Ga1T1 + UaaTy + 9373 T Aoaly O Rg,
M N

i1 + Aa0%s - gyt 1 a4ty = k.s;

\\
ag1®1 + (goly b GaaTy ARt = k.

o/

Tt is specifically assumed that thm*’é"ac"rually are four variables in
these equations and that there actually are four equations in the
set. The methods of section'd of chupter 5, which led to equa-
tions (561), arve applicablegtibre. Thus, for example, first 24 could
be eliminated between((}:) and (1s); next #y would be eliminated
between (1;) and (N then z4 would be eliminated hetween (1)
and (1;). There weuld result three equatiens in 2y, xs, #5. Then
these three equationw would be treated as equations (26) of chap-
ter 5 were trea,ted In whalever way the eliminations were per-
formedpfhére would result four necessary conditions analogous to
the th{\s necessary conditions (51} of chapter 5. In each of thesc
fou{' t}'ondltmm the cocficient of the variable is the number

o \
N+ entmtsen + @nutiaay + aaaisasgas, — G41012023034

— f1iGs2l238 — 021012033044 — 3109 ades - G410120550024
) T Gy1fpe4nlse — Goildsatyzdiy — (310130430 — Q41000035014
T G132043024 F 02101904304 + 031022043014 + (4102901305
T @11¢42023031 + Q21000033010 + 31043013005 — Qa1@aoti3ng

— O11%a20a30es — Q210490138314 — $1Ganlaslisg + (g Qyeliandi.
128
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This number will be designated by D. 1t is the determinant of order
four whose symbol is

a1 iz g i1

sy gz ez O24

t31 Oz Oz3 O

@41 G4z Qa3 Gaa

(3)

A yule will now be explained by which the number {2) can be
written down divectly from the symbol (3). All the arrangementse
of the numbers 1, 2, 3, 4 are given in the first column of T'able I}
These arrangements can be found by wriling the six arrang@ﬁieq‘bé
of 1,2, 3 and then inserting the number 4 in all possibie pds‘ﬁions.

~

N
TAPBPLE I K7, \
-\ Ny
Arrangement  p (—1)7  Literal product Bighed product
1234 0 1 110226033044 N\ 118adaatae
13214 1 -1 mmazamfl»iﬁ:',\\" — a1ye0nati
2514 2 1 anamautey, T audafisti
2134 1 -1 1 eIl — 10125530t
3124 2 1 aglgﬁmm.; -+ 1012003044
3214 3 —1 ‘:asiaggalatbu — Ga1tga1atid
1243 1 ~1.28  ayiriantistad — 411022043031
13542 2 e St + et
2341 3 S00 da1itgettazii — g1ttt
2143 264\ 1 1004303 + og1a12023051
3142 3\\ -1 (431019004302 — @z1ftrathipdted
3z41 & :L 1 31027043014 + 1151022043014
AN/
14 2:3\'“.’ a 1 011t aftesti + anftazreata
1 482 3 —1 flp1a0dyyties — 1104903304
RN 4 1 Gn10apistLe + antnona
2} 13 3 -1 ae1G4fhase — Uitz
AN V3412 4 L darftiatiiatiog + aaiftaztizios
\\ w 3421 5 ~1 F310apt T — Gy1ali2at1e
41238 3 -1 41012023554 — aatiaeatdad
4132 4 1 A4105arigatad + eqniadiatst
4231 5 —1 eyt — 41022035014
4213 4 1 @a1etpatt1ads + aqidtaatindag
4312 5 -1 ay10gatiaites — (41 T3e015riad
4321 6 1 241132093014 -+ aqiftaziepntay

Tn cach row of the second column of this table is the number p
of inversions in the arrangement which is in that tow. In the
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third eclumn are the values of (—1J7. In each row of the fourth
eolumn is the lteral product whose factors have their second sub-
scripte in the normal order and their first subseripts in the arrange-
ment appearing in that row. In each row of the fifth column is
the signed product, which is the result of multiplying the literal
product and (—1) for that row. Now, by definition, the deter-
minant of the fourth order whose symbol is (3) is the number
(2), that is, the sum of all the 4! signed produets in column five

N\
of the table.

Next there will be explained a notation which is used to d@c@ the
in one phrase all the signed products which oceur in (‘3) “The
arrangement which the first subseripts of a signed pradw % form is
designated by 4pisie. For the particular qigned product
— 31019043024, therefore, 4 =8, 52 = 1,43 = 4,.‘34 = 2. Also [or
arrangement 3142 of its first ‘-sllbbC'[‘lpTE: theNpeble gives p = 3.
Hence this signed product is a special :u(stanm of the arbitrory
styned product {—V)Pa; 10000004, 1 whidh i1ixiyiy 25 an arrange-
ment of the numbers 1, 8, 3, 4, shouldy’p inversions. Again, the
signed product +as1a4atsaas 13 ,t];é “épecial ingtance of the arbi-
trary signed product in which di™= 2,43 = 4,43 = 3, ¢4 = 1, and
p =4, linch of the 4! signé®products which oceur in (2) is an
instance of tho arbitrary signed product designated above, All
the signed products of {his'type occur in (2). Therefore the deter-
minant (2) is the surn.of all the terms of this type. This is a rule
by which (2) may%e written down directly from (3).

Another e \by which the number (2) may be written down
directly frothythe symbol (3) will be explained now. 'There arve
six tﬁnpg&t"@) which involve the factor ay;. The sum of these
six tNélS’ is a11(tanttazas — Ggalloztise — G2a0ialsza + 032043824 +
G42@23&34 — @azlaattzs). The coefficient of @)y in this expression

. £ be written in the form ase(ta3tas — Qustsy) — dge(@ag@es —
\ *0’43&34) 4 G43(@33031 — Gz3024). In this form it iz obvious, by
anatopy with (54) of chapter 5, that this coefficient of gy is the

determinant
Qog oy {nq

Now this symbol is obtained from the symbol (8) by deleting from
the symbol (3} the row and column in which a;; stands. This de-
terminant is called #he minor of @11, and is designated by Ais.
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Henee the sum of the terms in (2) which involve a1; is a; 4,4,
The minor

12 &3 d14

Oyg &3 34

ez &az L2F]

of ay1 in (3) is designated by A, Anulogous definitions hold for
Ay and A, With these notations the number (2) becomes
aydyy — Gordey + as1ds; — agds. This expression gives{
practical rule for writing down the number (2) dircetly {rom the
symbol (3). Other facts about determinants of order fouitarill
appear as special cases of rules for determinants of ordern.

D,
¢

The determinant whose symbol is R

? '\’
k1 13 $7F:3 014 \

{4) ks otz 4oz 024
ky @z 0w as')’ri\ /
ky  aag 434, \&44

will be designated by Dy, Thus Dk is a number which can be
obtained from (2) by rpplacmg ‘an, dg1, 831, G4 Tespeclively by
kv, ko, kg, ke Similarly DaN 1§} by definition, the determinant
whose symbol is obtained frath the symbol (3) of D by replacing
the elements in the seconddcolumn of (3) respectively hy the con-
stants ky, ko, ks, k4., @Wo Dy is the determinant whose symbol is
ohtained from the ﬁ%bol {3} by replacing the third eolumn of (3)
by ky, By, Es, By, and Dy is obtained by replacing the fourth column
of (3) by ky,Jgiks, ks Then the four necessary conditions which
wore ment.i'bm‘d just before equation (2) can be written

(5) A%Dxi = D, Dazy =Dy Dy =Dy Dag= Dy

Tl(é «ﬁroofs of the following fundamental theorems, in whichn = 4,
'“‘G;m{ be completed as the analogous proofs in chapter 5 were com-

N\ Ploted.

TuEOREM 1. If the determinant D of the coeflicient matriz of the
system (1} is not zero, then there is one and only one solution. This
solution is the ordered set of numbers D1/D, Dy/D, D3/ D, Dy/D.

Tuvorkm 2. If the determinant D of the coeflicient mairiz of the
system (1) is zero, and if af least one of the delerminanis Dy, Dy,
Dy, Dy is not zero, then the equations are inconsisient.
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PROBLEMS

Trind the ranks » and », for each of the following systoms of equations. Tse
theorems 1 and 2 to determine whether the equations arc consistent or ineon-
sistent.  If they are consistent, solve them.

L. B3+ + z—2w= -1, 2. 4 s — i+ u= 4,
—z+2y+ha+ w= B, ~v 4+ s+T— u=11,
2 46y b4z - w= =—3 v+ B35 — 64 11w = 8
55+ 2+ 924+ w~= 2. Q418+ t+ n= 1

3 p+25 — 45w =1, 4, g— v+ 24+ 5w —=1-EN
dp — s+ 3+ uw=1, ar -+ 2y — 22 + m=2
—w — 3z + 8t — u =3, —x 3y —22 — Tw =LA \
—50 — 3 + 6L + 2u = 2. —4z + 5y — 2 — 1263 5,

B. %o —3y4+Te4 w=0, 6 T2 — K w=0,
—x + 2y + 52 =90, 2 — 3c + SHRMu =0,
Sr44y+ 24 w=0, v + AN 24 =0,
2 — 5y + 32+ 4w = 0. — 20+ ANKRMH A+ n =0

T 22— 29+ 243w =2 8. 39:+ %;\ 2z + 11w = —12,
2r— y+H— w= 1, 71;—1— z— w= 2,
B+ Ty+34+ w= -1, g?j-2y+ﬁz = 12,
3z — My + 824 Tw = . (r— g4+%+ 20= 7T

9 22— s— t— w= 2 el’q:" w— v— w4+ t= 1,

pd S+ 2+ we= ~9 W QutB+ w—B= 2
B4 25— Tt —Gw = —6,  ay 3u— v —dwtU=—1
—v+?s—1—5£+2w=—'3.. - —15u — 2o+ tiw — t = 1.

It 15 to he noted t.hatl“m\thL section ther(, hag been a discussion
obly of the case in \(hlfh n=4and g =4 Algo, if cach of D,
11, D3, Dy, Dy isghero, then theorems 1 and 2 are not applicable.
That iz, il » <(& "and 1, < n, then further discussion is required.
No ﬂlustw;tmph will be given herc which are analogous to the sys-

tems (60 ’md (67) of chapter 5. All the situations which may
arise willappear as special cases alter the general theorems have
be&{;’ prover.l for arbitrary » and arbitrary g¢.

2y Determinants of order five. Determinants of order n Ifn
\s & positive integer, then the notation

ay12q + Z19Ly + e _]—' dy iy = ;il]_,
(6)

Anidy + Qnatn + R Cppdn = kﬂ,,

will be used for a system of n linear equations in n unknowns.
The particular case in which # = 3 was digcussed in chapter 5.
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The regults were simplified by defining determinants of order
three. The particular cage in which n = 4 was discussed in sec-
tion 1, and determinants of order four were defined in that dis-
cussion. 1f n = 5, analogous details would be very intricate.
They will not bo presented herc. The results will be obtained
very simply ag & special case after the gencral theorems have been
proved for arbitrary n. However, the definition of & determinant
of the fifth order will be given here to illustrate the fundamental
definition of a determinant of order n. ,

There are 5! arrangements of the numbers L, 2, 3, 4, . ’l’!nese
arrangements may be obtained syatematically in the follawing
manner from the 4! arrangements of the numbers 1, 2, 3,;:4‘ which
aro listed in the first column of Table 1 in section 1. (irst adjoit.
the number 5 on the right of cach of the arrangemeiits in Table 1.
Thew insert 5 between the last two numbers of eatﬁ}m\of the arrange-
ments in Table T, Then insert 5 between the decond and third
numbers in each arrangement. Then inga&*ﬁ between the first
and soeond numbers in each arrangemend. Then adjoin 5 on the
left of cach of the arrangements. THUs'the table of arrangements
of 1,2, 3,4, 5 would have five sg(.vt‘rmfﬁ, each scction derived from
the first column of Table T At portion of one of these sections is
given in the first colunn of ,"1‘.:}1.ble 11.

imx\ TABLE II
Arrangement, X\ N( —1y" Lileral product Signed product

15243804 1 0111052052344 0E35 + a1 eszizsal e
1538% h -1 2110 aaaa 44 — (@112E20330044035
24 3\4« 1 6 1 A1 3a0a 15 - 210tRa5344015
N S i -1 Q51052713041 135 — ay{sat13049008
'%5' 142 6 1 (4310520t 3014025 + ng1@5t1304a025
W3'5241 ¥i —1 310062023 447815 — gapitpedaiiadis

“\MI the entire table for » = & wore exhibited, there would be 5!
figned products in the last column. The sum of these 5 signed

products is, by definition, the determinant whose symbol is

a1 a2 ¢z O34 dis
[15:38 oz Qa3 qge  O25

N
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The notation (—1)Pa;10;20:,30;40:5 15 used to describe all the
signed products whose sum is the determinant whose symbol ig
(7). The particular signed produet — 150013044035 has p =5
i = 2,4 =54 = 1,4 = 4,45 = 3. Again, the signed product
+ g1t500 13044000 has B = 6, ‘1:1 = 3, 3‘2 = 5, ?:3 = 1, f,; = -’1, f_n;
= 2. Hence, by definition, the determinant of order [ive
whose gymbol & (7) is the sum of the 5! terms of the type

(1)1 04,20:,304404,5, In which 4yy7sisd; is an arrangement of

the numbers 1, 2, 3, 4, 5, showing p inversions. Q)
In general, by definition, the determinant of order # “'hOSsti\ym-
A € N\
bol is A\
a1 Tz Tt G | g ™
@21 Qgz v Gog )
(8) . . . 'M.'\g'
Any  Qpz o wn;}
_ N _
is the sum of the n! terms of the twbe (—1)Pa; a0 - Gy in
which 4143 --- ¢, is an arrangement of the numbers 1, 2, - -, #,

~

showing p inversions. RN

A practical rule for writing down the number which is the deter-
rainant directly from the symbol of the determinant wag proved
iftn =3andif n = 4. Phys was the expahsion of the determinant
by miners of the clepdents of its first column. The proofs of this
rile and other exga}s}_on rules for determinants of order # involve
the use of two. fudamental propertics of determinants. These
fundamental ‘pfoperties are alto used to prove facts which sim-
plify caleuldtitns with determinants. 'The simple proofs, which
will besgiven later, of the facts about an arbitrary number g of
linearéequations in an arbitrary number n of unknowns are hased
dj}:géﬂy on these properties of determinants of order n.

\?5} First and second fundamental properties of determinants of
order n. The idus of one-to-one eorrespondoenee is basic in the
proofs of these properties and in many other mathematical proofs.
The form in which it is to be used will now be illustrated. Let
there be a set of seven numbers, s, g, -+, &, and let S be their
sum. Let there be a second sot of seven numbers, &, &y, - -, i7,
and let T be their sum. Therefore § — & + 8 4+ -k 87, and
T=4H-+t+ -+t Now, i it were known that 51 = b,
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$g = Lo, +-+, 8 = &, then it would be true that § = T. These
soven equations, vhich are the hypothesis that implies S = 7,
are an illustration of the meaning of the statement fhat the seven
numbers in the first set and the seven nurbers in the second set
have been paired and that the numbers in cach pair are equal
In genersl, a pairing, regardless of whether the numbers in each
pair are cqual or not, is called a onc-to-one correspondence.
Another one-to-one correspondence in, which corresponding num-
bers arc equal is iflustrated by the equations 81 = 7, Sz = la\
§y = o, 84 = 1, S5 =g, S =I5, 87 = b 1f this were the hie
pothesis, it would be true that S = T. A one-to-one correspomd-
ence in which corresponding numbers arc negatives of gza.’c:H other

is illustrated by the cquations s = —fz, 82 = —lgNeg = —la,
8 = —11, 85 = —ty, 55 = —tg, sy = —ig. 1 this Fyere the hy-
pothesis, it would be true that § = —T. It is."o‘g\wious that the

number seven of summands could be replaeeds by any positive
integer. Ilence the following lemma hag :b@n proved.

Tunsa 1. Tet N be ¢ posilive e’nieger;: and lei there be fwo sels of
numbers with N wumbers in each sela f u one-{o-one correspondence
cxisis between the numbers in t{te?tiﬁo sels such that corresponding
nwmbers are equal, then the swrg&i‘tif the numbers in the first sel eguals
the sum of the nambers n fhe wecond sef. If a one-flo-one correspond-
ence exists such that coffesponding numbers are negatives of cach
other, then the sumcof Whe numbers in the first set is the negative of
the sume of the num%e in the second set.

The f ollowi:.ié Jemma 2 Is also basic in the proofs of the first and
second funddmental properties of determinants of order n. This
lomma@l be illustrated now for the casc that n = 7. ¥rom the
arrm:g;iéuﬁmt 35174286 of the numbers 1, 2, 3, 4, 5, 6 7
obtdin, by interchanging the numbers 5 and 2, the arrangement

3 217456, There are nine inversions in the frst arrangement
and six inversions in the last arrangement. The differcnce be-
twoen nine inversions and six inversions is the odd number three.
This illustrates lemma 2, because lemma 2 states that the differ-
ence in the numbers of inversions Is an odd integer. The proof of
lemma 2 is illustrated in the following explanation of how the
number of inversions changes from nine to six. Let the two adja-

cent numbers 5 and 1 in the arrangement 35174 26 be inter-

changed. All inversions which arc in the original arrangement,
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except that due to 5 and 1, appear also in the new arrangement
3157426, Nonew inversions can appear. In this second ar-
rangement let the two adjacent mumbers 5 and 7 be interchanged.
The third arrangement is 3 1 7 54 2 6. All the inversions which
were in the second arrangement also appear in the third arrango
ment, and one new inversion due to 7 and 5 appears in the third
arrangement.  This illustrates the general fact that, if adjacent
numbers arc interchanged in an arrangemoent, then the number of
Inversions in the new arrangement is one more or one less than the
number of inversions in the original arrangement. A
Now continue to inlerchange 5 with each number on .ifs\ “r}ght
until it has been interchanged finally with the nunabor 27 Then
interchange 2 with each number on its loft until it has heen inter-
changed with the number 1. The following tg.Qlé'exhibits the
arrangements and shows how the number of Mversions changes.

Number of

Arrangement, ) jﬁQf&rsions
3517426 XN o
3157426 ]
3175428% 9
3174524 8
3174056 7
317.2%5 6 &
3 ]\f 7456 3
AN 7458 i

The proof of lc;mhu 2 involves only the ideas illustrated in the
preceding discp\ssiem. Let n be a positive integer. Tf two arrange-
ments of the@hmbers 1, 2, 3, -+ 5 ure such that one interchange
of adjacentlfiumbers in the Arst arrangenient yields the second
urraugel}mnt, then the number of inversions in the first arrange-
mengihinus the number of inversions in the second arrangement

34 Nor —1. Next congider two arrangements such that one inter-
change of non-adjacent numbers in the first arrangement yields
the other arrangement. Let there be £ numbers in the first arrange-
ment which appear between the two numbers to be interchanged.
Then there are 2¢ + 1 arangements which can he tabulated under
the first of the two given arrangements, such that each arrange-
ment is derived from the precedin g one by interchanging adjacent
numbers, and such that the last arrangement in the tabulation is
the other of the two given arrangements., Thus the number of
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invergions in the first arrangement is obtained from the number
of inversions in the last arrangement by adding 2¢ + | integers,
cach of which is 1 or —1. This completes the proof of lemma 2.

Levma 2. If fwo arrangements of the numbers 1, 2, 8, ---, n are
so related that one interchange of two numbers tn the first arrange-
ment gives the second arrangement, then the number of inversions in
the first arrangement is the swm of the number of tneersions in the
second arrangement and an odd (positive or negaiive) inleger.

Congider two determinants A and B whosc gymbols arc respec-

tively N
e R I /T SR SV A
(9 [ . and | - .x‘j\i-
i
Qg v O4g by \\ baa |

Ty definition, 4 is the sum of the srgn}d products in the last
ecolumn of Table I, This table will femporarily be referred to as
Tahle I,. The table which is obtailjléd from Table I, by replacing
earh letter @ by the letter b wi.[lfbé referred to as Table I,. Then,
by definition, B is the sum of the signed products of the last col-
umn of Table Ty, It is 4G be noted especially that all subseripts
in Table I, remain précigely as they are when Table 1, iz formed
and that the signg B\the signed products remain. For example,
the signed produéf)+ de1aza1304¢ in Table I iz in the same loca-
tion as the sied product -+ boybasbrabes In Table Iy; the gigned
product —{@efst;zess in the same location as — boibazliabad.

The fifsh fundamental property, which will be illustrated and
prmied‘}mw if 7 = 4, has the following hypothesis:

..\ﬁi:ét' calumn of symbol of 4 is first column of symbol of B;
N iecond columnn of symbol of 4 is third  eolumn of symbol of B;
third column of symbol of 4 is second column of symbol of B;
fourth eolumn of symbol of A is fourth column of gymbol of B.

This hypothesis is also expressed by the statement that A is ob-
tamed by interchanging the second and third eohumns of B. In
terms of the elements of the symbols (9} this hypothesis 1s

(10) g = b.‘-l, iz = by, @G = b, @iz = big (3 =172 3, 4)
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The conelusion in the first fundamental property isthat A = —F,
This will be proved by means of lemmas 1 and 2 and equations (10).

It will be proved that there is 8 one-to-one correspondence he-
tween the signed produects in the last colamn of Table L, and the
signed products in the last column of Table I, such that corre-
sponding signed products are negatives of each other. Tor ex-
ample, consider the signed product + ay;a00a54a,, in L. By (10)
it is true that + @1id2203304e = -+ by(Dagbgabs,. Now any produ.gt
is the same regardless of the order in which the factorsN\are
written down, since the factors ave ordinary numbers., (T¥énce
+ bubasbasbys = 4 Dyybusbosby.  Henco -+ 41100605301, =
+ b11busbogbis.  Since the left-hand side of thiz cquality is an
entry in coiumn five of Table I,, therefore the‘rjg:l'lthund sida,
namely =+ by1baobaglyy, is a term in the sum wbif}h\is A, although
it does not look like a term in 4. Indeed\3vE, 1h3ebazhis looks
more like the terms in B, beeause terms {r\\B are signed products
of four factors, each of which is a dolble-subseripted lotter b,
But — byybaobaghys (not + biibasbasba} is in the last column of
Table I.. This is true because the Yiteral product by fyubesby, is
found in Table T, precisely whego the Titeral product ayyaseaguty
is found in Table T,, namelyi in the second row, Therefors in
Tuble I, the signed prO(ijl(?E::— biibagbasbay is in the second row
and last column. Thusjblas been proved that the signed product,
+ 411025043044 In A equals the negative of the signed product
= Diabygbyghay in BAN

Noxt eonsiderd the signed produet, — a11€5ataata, of Table 1,

By (10) it ]6 ‘{?111'(3 that — Qj1dz0lagflyy = — 2}11!)33bzzi‘)44. B_y re-
armnging fﬁGtO]‘S it is true that — 3}11b33b22b44 = — bllbggbggz)dq..
Uence £ driaastzgay, = — biibashysbys. Now the literal product

by 152201)3‘ 14 15 found in Table Ty, brecisely where the Iiteral product
aydapttaattyy is found in Tahlo To, namely, in the first row. There-
...£@1;?3 in Table Iy, the signed product in the first row and lagt column
i€+ biyDbosbysbiay (not — biibashyzbyy). Hence the signed product
— Anfsadezdsy In A equals the negative of the signed product
F b1bogbaghys in B, Similarly it is proved that the gigned product
+ @naizaqgny, in Table 1, is the negative of the signed produet
— baybyshisbss in Table I, and that — 1182003501, 18 the nogative
of + Barbyabosby g
The preceding signed products of I, were speeial terms in A,
1t will be proved now that the general term in A is the negative
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of a term in B. The general term in A is (—1)Pay, 1a4,08,30:,4, in
which 4757324 is an arrangement of the numbers 1, 2, 3, 4, showing
p inversions. By (10) and rearrangement of factors it follows that

(113 (—1)Pas10090050:4 = (—1)"hy1bisbsabig,
(12) (=D 0i,1@i,004,3004 = (—1)7hi 1050058004,

Now the literal product by bieb;,sbi,e oceurs in Table T, preciscly
where a;16,004,300,4 0ccurs in Table I, namely, in the row for thes,
arrangemont €,252579. By lemma 2 the number of inversions which
t1751a74 shows is ¢ — Lor p + 1, sinee 4197374 shows p 1nver5ioﬁs
Also (—1)P~L = (—~1DPT Hence (—1)** biysbi,abialig 18, 3 term
in B. Thus by (12) and Table Iy the literal produet bkl 2b.,sb:.4
establishes a correspondence between the term (— L) adl 1@ip2 07,3054
in A and the term (— l)”‘lbmbugbaﬁbm in B, B} (12) and the
facl that (—1)? = —(—=1)?7 it i true that the general term in
A iz the negative of its corresponding tm;n:;\h:r B.

It is to be noted especially that termg-nn/A which have different
arrangements of fiest subseripts corr¢Spond to terms in B which
have different arrangements of ﬁl‘§{’).&1165(}1‘ipt5. Thus & one-to-one
correspondence has been established between the 4! terms whose
sum is 4 and the 4! ferms whoéé sum is B, such that correspending
ferms are negatives of egeh ‘other. Therefore by lemma 1 it is
true that 4 = —B. A\

In general, if angicfvo columns of B are interchanged and the

“result is called ('2thch a one-to-one correspondence can be estab-
lished such that’ {forrwpondmg terms are negatives of each other.
Henee 1 « 'au\be proved that ¢ = —B. Hence theorem 3 has been
proved fms 4,

THEO}II-}M 3. If the symbol of o deferminant A is oblained from
thp.g@.%ﬁbol of @ determinant B by interchanging two columns of the
,\”é‘y;mbol of B, then 4 = —
PROBLEMS

1. Construct the table like Table II which contains the arrangement
84512 Construct such s table for the arrangement 3 4 2 1 5.

2. Construct the table like Table IT which contains the arrangement
49513 Construct such a table for the arrangement 5 2 4 1 3.

3. Let n = 5, and Iot A be obtained by interchanging the thivd and fifth
columns of B. Find the term in A which has the literal product azi@eatsstales
8s o factor. Find the term in B which corresponds fo this term in 4, Bhow
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that these terms are negatives of each other. Treat the Hteral products
Q2104355031015 And 0y1esaTssatey similarly.

4. Proceed as in problem 3 if the first and third columns are interchanged
and the liters] produets are G4 0220530140035, C1001205300005, (51000t 3ty

6. Let % = 7, and find the number of inversions for tho arrangements
3726154and 37461452 Tabulate these arcanpements with ap-
proprizte intervening arrangements such that each arrangement in the fable
is obtained from ihe preccding one by one in terchange of adjacent numbers,
Fiud the number of inversions for cuch arrangement in the table.

6. Proceed as in problem 5 with the arrangemcnls 6 1 4 2 3 7 5.&nd
6342175 N

7. Proceed as in problem & if » = 7, the second and ffih coliftuns arc

interchanged, and the literal products sre N
Ny

B2GReHIGATTEACRALT,  BT1I20REAU 5T RS, aﬁl%%lﬂ?@ﬁﬁﬁ;ﬁ%?-

8. Proceed as in problem 3 if n = 7, the first and fourth Eﬁlumns are inter-
changed, and the Hieral products are T\

3101204307 MosaR0T, (510 Ttaar1e 03600 aT, Qw?aa%amﬂewesasr-
o\

All the ideas in the following proof of $hikorem 3 if n is arbitrary
have heen used in the preceding proo[Nf n = 4. Let the symbol
for A be (8), and let the symbol for B be obtained if cach letter o
in (8) is veplaced by the letter BOSBy hypothesis s and ¢ are fixed
but arbitrary positive mtegetdsuch that 1 Zs<t=Zn Inthe
preceding proof n =4, § =9 ¢ = 3. Also, by hypothesis A s
obtained by mtel'chanﬁg the columns numbered s and ¢ in B.
That is, ¢ 2\J
Ria =‘Eb“\ (T' = 1} Ty n)!

(13) a“.!\ﬂznbw (3 =1 - ) n))
Jwi=by (s, jAt =1, ... ).
N oW ‘the"typical terin in the sum 4 is (—=1)Pay, «-- Bipe *** Gy

S, owhich dyee gl d ol g s oan arrangement. of
~J8 7 ny showing p inversions.  Also by (13) it is true that

R
= (“l)pbm e ba;,e by o by

Hence, by rearranging factors in the product on the right-hand
side of this equation, it is true that

(15) ("1)370-\»:11 st Gg oy,

= (Db o+ by - by <o+ By
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It is to be noted espeeially that in these productls the factors which
are indicated by dots have their second subseripts in natural
order; that is, the only disturbed subseripts arc among the exhibited
gubseripts.  Hence in the sccond product in (15} the second sub-
seripts are in natural order. The list of first subscripts in this
product, namely, & <+ 4+ € - €y, I8 an anangem(\nt of
[, +++, = which is obtained from the arrangement ¢; - -- 4, + o+ 4

- i, by Interchanging 4, and ¢,. DBy bypothesis the 1atter ar-
rangement shows p inversions. Hence by lemma 2 the numben
1 of inversions shown by the former arrangement. differs from
p by an odd integer. Therefore (—1)7"" = (=¥ Therefore
{—1 )p—lbm ce by e by o by, 18 oA term i B B}r" {15} the
literal product by -« bie o0 By v b«b n ea’rabhbheb 4 corre-
spondence between the term (—1)%a;; - - @4 -:"‘}1“ cer gy N
A and the term (—1)P by v« byg oo Byga\hby, In B, and
corresponding terms are negatives of each Dihél It is to be no’red
especially that terms in A which have dl‘ﬁferent arrangements of
firat subseripts correspond to terms A3 which bave different
arrangements of fivst subscripts, o\ ¢

Thus a one-to-one (*om'-,pondem{, has been established between
the n! terms whose sum is 4 and the »! terms whose sum iz & such
that each term in the ::u1n~A iz the negative of its eorresponding
term in the sum B. Tha bfme by lemma | it is true that 4 = —B.
This completes the onf of theorem 3 if » iz arbilrary.

If the symbol of\a determinant 8 of order # has two columns
which are ide nts\cal and if the symbol of a second determinant A
ig formed frofathe symbol of B by interchanging these two col-
urnns, themie symbol of A is exactly the symbol of B. There-
fou, A %B By theorcm 3 it is true that A4 = —B. Hence

—*—B and therefore B = 0. This ecompletes the proof of
tbet\ em 4.

V Trkoren 4. If lwo columns of the symbol of « determinant are
wdentical, then the determinant ©s zero.

PROBLEMS -

1. Use thesrem 3 6o verily the statement which follows (685) in chapter A,
2. Using theorem 4, show thab the points (1, —1) and (—2,7) lie on the

- 1 —2
locus of the equation | ¥y —1 7 | = 0. Henee this is an equation of the
1 1 1f

straight line through these points.



142 DETERMINANTS

8. Let {1, i), (s, ba), (as, bs} be three distinet points. Using theorem 4,
show that (g, by) and {ag, by) lie an the locus of the equation

x 223 a3
¥ by by =0
1 1 13

Hence thig is an equation of the straight line through these points. Also the

&1 [25:] a3
Bi by By
1 1 1

three points are collinear if and only if =0. "\

23 ‘\
4. Let (a5, by), {ag, ba), {a3, ) be three non-collinear points. T_,Ts.iug, tHobrem
4, show thut each of these points lies on the locus of the equation\,
24y a4 bP gl 0?4l '.( N
x %) an ay & §/
-~ =0
y by bo Vo)
1 1 1 1

Henee this is an equation of the circle through, *t:ﬁesé points. Find a noces-
sary and sufficient condition that (a, b) lie nphais circle.

The second fundamoental prope;'byz of determinants will now be
lustrated and proved il #n = 4, ket A and B be two determinants
with symbols (9). By hypo‘t-'heéi};

first  eolumn of symbol’df Aisfirst  row of symbol of B;
second column of g mbol of 4 is second row of symbol of B;
third  column afgymbol of 4 is third row of symbol of B;
fourth eolummnof symbol of 4 is fourth row of symbol of B.

This hypothesis’is also expressed by the statement that A is ob-
tained by/mterchanging rows and columns in the svmbol of B,
In ter}n\s O the clements of the determinants this hypothesis is

160N = b1y, @ip = bysy @i = Doy, ey = by (£=1,2,3,4).

N

£\

The conclusion in this fundamental property ig that 4 = B.
N\ This will be proved by lemmas 1 and 2 and equations (16),

It will be proved that there is a one-to-one correspondence be-
tween the signed products in the last eolumn of Fable I, and the
signed products in the lagt column of Table Iy, such that corre-
sponding signed produets are equal. For example, consider the
signed product + a,;as00g50.4 in I, By (16} it is true that this
eunals + byibasbagby,.  This latter term obviously is a term in I,
Again, consider — @yaspa43a14 in I.. DBy (16) this equals
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— fgbysbasby;. By rearranging the factors in this latter term it
follows that — ag1a32045t14 = — by b1abosbys. This last term is a
signed product in Table I, beeause the literal product by byobyshas
oceurs in Table I, exactly where ay410)9824034 oceurs in Table I,
namely, in the nineteenth row.  Again, — 44,0:0805054 =
— brabarhashas = — bo1baabysbis, by (16) and rearranging factors
6. The first signed product is in tho nineteenth row of I, and the
last is in the ninth row of I,

It will be proved now that the general term in A eorresponds to
a term in R and that corresponding terms are equal. The gefieril
term in A g (— )7 0510520550t in which 122057 is an dinge-
ment of 1, 2, 3, 4, showing p inversions. By (16) it is truc ‘that
(17) (—1) @10 aialt; 4 = (—1) bl@lbggg‘bﬂg’?‘b{gy
The factors in the product on ihe right-hand side’of (17) can be
written in any order, since mulliplication is dommutative. Let
them be written so that the sceond subsi ipts appear in the nat-
ural order, ag was done in each of thiptwherical illustrations just
considered. Then, as in each of the numerical illustrations, the
first subseripts form another ana,ngem( nt of 1, 2, 3, 4. This new
arrangement, which is formed by the first subscrlpts, will be des-
ignated by fijagsja- Thus (179 becomes
(18) (=DPasaipiass = (—1)7bjubiugbisbia.
For instance, in the Ta¥t numerical example above # = 4, &5 = 1,
fy= 2,4, =3, addyf, = 2, J2 = 3, ja =4, js = L. Now the lit-
eral product Bhyobssbie oveurs in I, Let v be the number of
inversions whieh the arrangement j jzjgji shows. "Then the signed
product (£} By,1b5,2D5.305,4 15 & term in B, Tn the last numerical
emmplt,\ whove, v = 3 because 2 3 4 1 shows 3 inversions; also
7 =3 beeause 4 1 2 3 shows 3 inversions. It will be proved in
gerflefal that » —p is an cven integer. It will then follow

at (—1)? = (—1)®?, and hence, by (i8), that the term
(—1)Pa; a:00:30:4 in A equals the term {—1)%b;1D;0b5ab54 0 B.
The literal product b;1b;ebiabig, which emcrges from this term
in A as in (18), cstablishes the correspondence.

The method of proving that in general v — p is an even integer
will be illustrated on the arrangements arising from the signed
Dl‘oduct — @z112043024 in A. B}’ (].b)

(19) (—1)%az 010053024 = (—1)%b1abo1bzabas.
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Since p iz the number of inversions which the arrangement 31 4 2
of first. subseripts on the left-hand side of (19) shows, therefore
the second subsecripts on the vight-hand side of (19) show p inver-
sions. Now the following tabulation

3142
1342

1243 O
1234 O

(20)

of these second subseripts jg such that each armngqrﬁo\ﬁt ig ob-
tained from the preceding hy one interchange of nufmbers.  Other
tabulations in which this is true, and the last @rrangement s
1 23 4, arc possible. If s is the number of Gwtangements under
314 2in such a tabulation, it will be proyed that p — s is an
even integer, By lemuna 2 each step iﬁ;‘,’th(: tabulation changes
the number of inversions by an odd Mifteeer. Thercfore the num-
ber p of inversions shown by 3 1 1 3.differs from the number zero
of inversions shown by 123 4 b}%:ﬂm sumy of these s odd integers.
If they are designated by 2;.',1;:}-[— 1, 2541, -+, 2, 4 1, their
sum i8 2(c; + ¢ +- -+ €+ 5. Hence p—0=2(c +ry+
ot o) bs and p -8 is an cven integer.
Each of the pmdt}ghf}\

B\ 2
XN\ (—1)%b15by1baabys,
:,"\;‘“ (—1)3by15 334Dy,
x:\n’ 3 .
N\ {(~1)by1bygbabns,

. & (—1)3521042513534,
1fi\,equ¢1 to the term on the right-hand side of (193, and the second
N\ Hubscripts in these products form the tabulation (207, Also the
first subscripts form the tabulation

(21)

1234
21314
21431
241 3.

(22)
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By definition # i3 the number of inversions which the last arrange-
ment in (22} shows. Bince there are s steps in (20), there are s
steps in (21) and s steps in (22), By the same method which was
used to prove that p — s is an even inleger it is here proved that
# — & 18 an cven integer. Since cach of p — s and v — ¢ iz an
even ilegor, 1t follows that their difference » — p is an even
integer.

Thiz method will be used now to prove that, if » is the numben,
of inversions shown by jifafzjs in (18) and if p is the number ‘ef
inversions shown by 7,79737, in (18), then v — p is an cven integer.
Now the second sutbseripts on the right-hand side of (17) form the
arrangement ¢1¢273¢4.  Under this arrangement a tabudadidn analo-
gous o (20) can be formed. This can be done, foi-*cxamplc, by
moving whichever of €y, €s, 73, 71 i8 1 Into the ext«‘ébe left position,
then by moving whichever of 7;, 43, 4, 44 1s 2 «hto the second posi-
tion, and then by moving 3 into the thirgipbsition. The number
4 will then be in the fourth position. Bpdelinition s is the number
of arrangements in this tabulation yider 414udyds. Now o sot of
productz analogous to (21) is (:Qmsttrﬁct-ed. The product at the
top is the right-hand side of (1%} and the second subseripts form
the arrangements in the prededing tabulation. This induces a
tabulation anulogous tou(~22)' “of the first subseripts of the lefters
b. Therc are s arrangements under 1 2 8 4 in this tabulation.
The last armngemel\ﬁ; s f1jadeds on the right-hand side of (18).
By lemumg 2, p —*si5 an even integer and » — s is an even integer.
Henve v — p AN even integer, gnd {(— 1P = (—=1)". Therefore
the gencralderm in A, which is the left-hand side of (18), equals
the tersn/&S1)h; b abjabse in B

Termeun A which have different arrangements of {irat subscripts
correspind to terms in B which have different arrangements of

JGEEY subscripts.  Thevefore a one-to-one correspondence has been
\¢#tablished, such that corresponding terms arc equal.  Therefore
A = B, by lemma 1. Hence theorem 5 has heen proved ifn=4.

TrEorey 5. If the symbol of a determinant A is obtained from
the symbol of a delerminant B by interchanging rows and columns i
the symbol of B, then A = B

The proof of theorem 5 if # is arbitrary involves no new ideas.
By hypothoesis
(23) a5 =bx (=1 --,m F=1L -, n
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Now, if (23) arc applied to the typical torm (—1)Pa; 052 <+ 04
of A, and if the factors b arc reordered so that the second sub-
seripts are in normal erder, there results a new arrangement
Jigz - Ja of first subseripts such that

(24) (—DPasn0s - G = (—1)PD1ibog, - o+ by,

= ("l)pbfllbfﬁ e b.‘f'u“'
By an argument similar to that involving (20), (21}, (22} 4tMs
proved that, since #yés --- 4, shows p inversions, the n\mhm

v of inversions shown by fifs -+ - 4, differs from p hy\ ah’ even
integar. Therefore (—1)" = (—1)7’ Hence the SIgnéd product
{(—1)"b;1h4,2 - - - by, which is in Table T, in the s’tmé” row ag the
arrangement fi17s - - - 7, equals the last tetmm}J{\@é). Further-
more, terms in A Which have different arrabgements of first sub-
seripts equal terms in B which have dl[‘f(‘r(\t arrangements of {irst
subscripts. Thus a one-to-one corw\{tm ence has bheen estub-
lished between the terms whose sutd I A and the terms whose
sum is B, such that corresponding. terms are equal. Thevelore
A = B by lemma 1. Thig comﬁﬁztcs the proof of theorem 3.

An important corollary ofltheorem 5 and theorem 3 will be
proved now. Letf the symbalof a determinant 4 be obtained from
the symbol of a determiftant B by interchanging two rows of the
symbol of B. Let t-,h'g?% be the rows numbered s and . Now con-
sider a determinanfVy whose symbeol is obtained from the symbol
of B as follows::'

s obtamoa by interchanging rows and eolumns in B;
D 1s obtal ed by interchanging columns numbered s and tin C;
1 bbtained by inter changing rows and columns in .

'lherefote C=B,D=—C,E =D. Onthe other hand, the syr-
m\hol of I is precisely the symhol of 4. Henee 4 = —B. This

4

completes the proof of theorem 6.

TarEoREM 6. If the symbol of « determinant A is oblained from
the symbol of a determinant B by interchanging two rows of the sym-
bol of B, then A = —

PROBLEMS

1. Prove that, if two rows of the symbol of a determinant are identieal,
then the determinant is zero.
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8. Letn = 5 and A be obtained by interehanging rows and eolumns of B,
Tind the terms in 8 which correspond to cach of the [ollowing terms in A:
+ Ga1fae0540es] + G21849T50aate; — C110490Rataes.

3. Proceed as in problem 2 for the terms in 4 whose first subseripts form
the following arrangements: 4 3 1 5 2, 43215, 541 2 3.

4. Troceed as in problems 2 If » = 7 and the first gubseripts form the
following arrangements: 2 1 53 76 4; 7135462, 6417523

6. Proceed us in problem 2if n = 7 and the firet subseripts form the follow-
ingarrangements: 3 1 4 7526; 5761324; 472136 5.

6. Using problem 1, show that (=1, 5) and {2, 7} lie on the locus of the

r oy 1 P
equation | —1 5 1| = 0. Henee this is an equation of the sf.rﬁi§ﬁtl§‘ne
P27 o1 O
through these points. Trove this fact also by using problem 3 01;.1;{3.‘ e 142 and
theorem 5. :

T. Blate and prove a problem which is suggested by pl’g]ﬂ\cﬁa 4 on page 142

and in which the variables are in the firsi row of the gynibal.

4. Expansion of determinants of order n.x.,:LQt the symbol of a
determinant 4 of order » be v

arn iz O

Gz1 Qz2  wy°® Yn

(25) f N
ﬂ?n‘]\\»\ Arg =0 Uaam

Then the minor Al\\)f'a.n is, by definition, the determinant of
order 7 — 1 whose'symbol is
\</

O oo Lan Tt Qay
i.\::.\“ dga  Ozz " Oua
N\ '
@) Q
) )
M\; W s s . A

The minor Aa of ay is, by definition, the determinant of order
# — 1 whose symbol is

iz 1z 7 fin
(ga ftaz "7 3a

Or2 an3 tee nn 1
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In gencral, the minor of the clement @5, which appears in he #th
row and jih column of the symbol (25), is the determinant of
order m — 1 whose symbol iz obtained from the symbol (25) by
deleting the sth row and the Jth column of (25). The minor of
a5 Is designated by A,;.

The proofs of the fundamentat facts sbout expansion of a deter-
minant of order # use a fact about the micor 4;; which is so
important in luter work that it is stated and proved now gx a
lemma. The lemma will be proved first if n = 4. Then A1 vhas

the symbel )
Uaa gy flgy . l:\
(28) a2 O3 agy | N
) daz M4y gy O
By (41) of chapter 5 m\

(29 Aiy = + agagsay — fyptysigy + Grauztiay

T O3l T Gglsgtlyg — (aaflygtag.
4 3

NS

TTence @414 14 is the number )
80)  + ar1¢mmtaatay — allazzva;s’@:h + anagaasen,

- a‘ll?ﬁﬁ?;;:;a'éAl + P11f4alaatsg — 011040055004,
Now hy Table 1 of section 1 the sum of all those signed products,

euch of which hag 4aNa3 a factor, is precisely the number (30).
Thus the followin‘i{é‘rﬁma has been proved if 5 = 4,

Lemua 3, AA is the determingnt whose symbol s (25), then
a1y eguqls:\ﬂie sum of all the terms in A cach of which hes g
as a factopy -

&
Nonew ideas are involved in the proof of lemma 3 if » is arbi-
tmr}f. Let 7 designate the sum of all the terins in A cach of which
hisbayy as a factor. Lemmy 1 will be applicd to conclude that
“NiAp =T T hus, first it will be proved that there are (n — I)!
termsin ¥'. Then it will bo proved that a;141, is a sum of (n — 1)!
terms.  Then a one-to-one correspondence will be established be-
tween the ferms in these surus, such that corresponding terms are
equal,
By the gencral definition of & determinant the terms which are
in 4" and which have 411 a3 a factor are the signed products

(31) (—1%aiay - %y W which 14y -+ - 4, js an

arrangement of 1,2, - .. 5, showing p inversions.
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Hence 49 -+ + 4, 18 an arrangement of 2, -+, #n. There are exactly
{n — D)1 differont arrangements of 2, ---, #, Therefore thore are
{n — 1} terms in T

Next it will be proved that a4 18 the sum of (n — 1)! terms.
There are # — L rows in the symbol (26} of Ay;. Henee, a3 in
(20) if n = 4, each signed product in the sum which is 44, has
exactly n — 1 double-subscripted factors a. If keks - -+ &, is an
arrangement of 2, 3, -+, n, showing w inversions, then
(?2) (—1.)'wa-¢¢ak33 st flem y \\
iz a signed product in A;;. There are exactly (n — 1)! difier\'éht
arrangements of 2, 3, ---, n. Therefore Ay is the gsuj.n\bf the
(n — 1)! signed products (32). Therefore, as in (30)51f w= 4, it
ia true that 431444 is the sum of the (n — L)1 terpn.sf'\(_)‘f the type

(33)  {—1)"ai1an,085,3 - - - Gn i Which koks M, 15 an
ayrangement of 2, 3, -+ -, tt{fﬁﬁowing w inversions.

It will be proved next that each termiv(33) in a1dg; equals a
term in 7. U n = 4, this was pm\-*gd"by inspection of Table 1.
In general, it is proved as folh}u-i%.’ * Yince 1 is less than each of
2,3, ---, n, it is Lrue that (SB}JJ'euomu%

(1) (—)%a110400,3 - <2, i which 1ok -+ &y Is an

arrang n{éuﬁ of 1, 2,3, -+, n, showing w inversions,
But by the generaddelinition of a determinant the gigned product
(31 isin A, $ildec aq1 is & factor in (34), therefore (34) isin 7.
Therolore ’r,heiu’rfcrm (33) in ar1dy; equals the term 31 in T.
1t is to b€ oted especially thal terms in and i huving distinet
arrangef&‘l{ts of first subscripts are equal to terms in T having
distiufed arrangements of first subseripts. Thereforc a one-to-one
G@fliéﬁin_mdmué has been established,  This completes the proof of

Nemma 3 if s avbitrary.

A particular case of expansion of determinants of order = will
he proved now. This case has been illustrated and proved if
n =3 in (51) of chapter 5 and if n = 4 in scetion 1.

Tusowes 7. If A is the determinant whose symbol 4s (85), then
A = ey — asrdon + andsr — 0t (—1)* @ du.  There-
fore

(35) A = (=D anda.

=1
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To prove theorem 7 let 7'; designate the sum of all the terms in
A each of which has g, as a factor. Now lemma 3 states that
Ty = {—1)""a;,4,;. Tt will be proved next that

(36) Ti=(—1)""eydy (G =1, --,n).

Let B, designate the determinant whose symbol is

a4 dig o
31 iz R P N\
N
AN
NS ¢
. . : W
(37) Gi—1,1  Gi1a v Giaa | (RN,
@41 Cipie v Qs \\
>
fin,1 Ty, N s

Now the symbol of B; ean be gk)tfaih(:d from the symbol of A by
a suecession of § — 1 int-erehgxggéé of adjacent rows. 'T'hus, in the
symbol of A the 4th and, { = st rows aro interchanged. In
this new symbol the elentents a;, dg, - - "y @4 form the (£ — 1)st
row. This row is in%‘rchanged in turn with each preceding row.
Thus (37) is obtajned after s — 1 interchanges. Hence by theorem 6
it is true that B& (—1)"'A. It is to be noted that the minor
of the element @, standing in the upper left-hand corner of the
symbol of Bfds procisely the minor A a of the eloment a4 stand-
ing in thgfirst column and sth row of the gymbol of 4. Now let
Jemma, 3 be applied to By Thus A, a1, Aqy in lemma 3 are re-
plaeed by Bj, ag, A, respectively. TTonce the sum of all the terms

p '.{ﬂfBi each of which has a;; as a factor equals ;4. 1t hag already

~been proved that B; = (=14, Hence the sum of all the termsa

in B; each of which hag ay as a factor equals (—1)*! times the
sum of all the terms in A each of which hus a; as a factor. Hence
by the definition of 7T, it is true that apdy = (=117, Thus
the proof of equation (36) is completed.

The proof of theorem 7 is completed as follows., By the defi-
nition of a determinant of order %, each term in A has either g
as a factor, or oy as a factor, -+, or a,; as a factor. Also no
terin in A has two of aq, aay, < -, 4, as factors, Therefore cach
term in 4 is a term in T, or & term in Ty, -, or a term in Th.
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Also ench term in 4 is a term in only one of 74, T, ---, T
Hence A = T + Tz 4----+ 1. If the equations (36} are sub-
stituted in this equation, the result 15 (35).

The result stated in theorer 7 is referred to as the expansion
of A by minors of the elements of the first column, or as the
expansion of A by its first column. It will be proved next that
A can be cxpanded by minors of the elements of an arbitrary
column.

Q"

TarzoneM 8. Jf A s ¢ delerminant whose symbol is (25), and
{ is an arbitrary but fized integer such that 1 < £ £ n, then ' \ \)

N

n : \
(38) A= Z(—l)iﬂaﬂﬁiz- ..'( ™
R
Tt ¢ = 1, this result follows {rom (35), since (apyit! = (—1) 1,
Tt ¢ > 1, let € designate the determinant shose symbol is

ay; @1t Big—1 OhRP T Gl
| @2 @z e @ag1 hepn cct Gon
(397 1 ™ {t>1).
1 Pt -
1 o\
ne Gur - {NFae—1 Gagtdl 0 G

)
Now the symbol of%C% can be obtained from the symbol {25} of A
by a succession(0f ¢ — 1 interchanges of the #th column of the
symbol of 4 ith the preceding columns. Ilence by theorem 3
€ = (—1)534. It is to be noted that the minor of the element
ay; standing in the upper left-hand corner of the symbol of C; is
precigCly the minor 4, of the element a; standing in the ﬁrs‘t row
andWh column of the symbol (25); the minor of age in C, 1s'the
""f\ili}ior Ay, of ag; in (25); - - -; the minor of gy, 10 ¢'; is the minor
A, of a, in (25). Now theorem 7 will be applied to .(;'g. Thus,
if ay, Ay in theorem 7 are replaced by @i, da respectively, then
Cy = Z{—])‘f—law‘l o 1f hoth sides of this equation are nniti-
i=1 } L
plied by (—1)*"%, the result is the equation (-0 =
(=1 (1) taydy. It has been proved earlier that 4 =

i=1 ; — 1
(=131, Also it is true that (~1F T = (=17 Hence
(38} has been proved.



152 DETERMINANTS

The following theorem 9 gives the expansion of a determinant
of order #n by minors of the clements of & row. It is a corollary
of theorem 5 and theorem 8, This result is also referred to as the
expansion by a row.

TezoreM 9. If A 45 a determinant whose symbol is (25), and if
s 13 an arbifrary but fived integer such that 1 < s = n, then

'

(40) A =3 (1) Fagd,; N\
— O
i r:\“\
AN
PROBLEMS A
N

L. Evaluate each of the following determingnts by exp;s,iié}on ny its zecond
column.  Check by expanding each by its third columpry

7 3 2 2 1 4 2 N 2 1 4
1 -5 -1, 1 =5 —11, wpEv2l, |7 3 2
l—a 2 ~4 2 1 42 1| |1 -5 1
2. Proceed as in problem 1 for the fujldwi‘rfg determinants:
—~1 4 2 517 N5 17 517
21 5, 121 SN -1 4 2|, | -1 4 27,
3 5 9 3 5 0 3 5 9 2 1 5[

3. Evaluatc each of the following deterniinants by expansion by its second
row. Check by oxpandifg pach by its thind eolumm:

[ 1 -1 4] 4.2 1 4 2 1 4 2 1 -1
=6 2 -1 801 2 -1, 1 -5 —1{, 1 -5 2
2 5 1IN -1 5 1 -4 2 -4 2 &
4, Pl‘Dl;;@éd}lS in problem 3 for the i allowing determinants:
PN 7 51 7 5 2 7 521
M3 420 -1 4 2|, (-1 3 2|, |13 4
'“5\N 1509 359 3109 315
/5. Let D be the determinant whose symbol is

2 1 -1 4
7 3 1 2
L —a 2 -1
-4 2 it 1

First ovaluate 1) by oxpansion by its third column and use of the results of
problem 1. Then evaluate ) by expansion by its second row and use of the
results of problem 3.
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6. Let D be the determinant whosce symbaol is

\5 2 1 7
L —1 3 4 2
‘2 -4 1 3

3 1 5 9l

First evaluate D by expansion by it second column and use of the results of
problen 2. Then cvaluate [} by expamsion by its third row and use of the
resilte of problem 4.

7. Fvaluate the following determinant, first by expansion by its third 0%,
and then by expansion by its last colunn. Why is one of thesc mgthpds

preferable to the other? The symbol is e\
A\
1 2 -1 3| \J
2 —5 3 7 & ""g
-1 4 ¢ 1 ‘ s \
9 1 2 1] o\
8. Proceed as in problem 7 for the determinant \»'jloée gymbol iz
~ V4 -
2 7 —1 AP

1 5 1
3 1 a\Y5s
3

-1 L2 a

S

_9 ‘..b‘ "

b. Other properties of detgr:;ﬁiﬁants of order n. One important
property of determinantg ob order = will be proved now i n = 4.

Let 4 and B be deter@inants of order 4 whose symbols are

ne
ayn %N o1 by e+ bu
{41) x<& . and 1 - .
4 -, . - . -
NWay o0 Gaa by o ba

N
L&ﬁ;ﬁt\be any number, and let by = may, boy = mdar, b3 = mag,
;bz;j“= may;. Also let cach other clement of B equal the wmﬂaﬂy
“Ntuated clement of A. In terms of the elements the hypothesis
is that
by =may (G =1,234)

42 :
4 1,2,3,4 i=234:

I

by=ay; @
It is to be noted that the minor Byy of by has precisely the same
symbol that the minor Ay of a1 has. In general

(43) B = An (3 =1, 2: 3, 4)
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The expansion of A and B by their first columns iz
A =aydy — andy + ag1dg — @414,
B = by1By; — by By +- bs1B31 — by By
By (42) and (43) cquations (44) become

(44)

A =apdy; — andz; + g sy — aq1 Ay,

(45}

N

B = mauAn - mazlAgl + maglA;“_ — ?’}1&41!141. O
{{‘ll -

The right-hand side of the last cquation in (45) is m(am,’
{121./121 -+ 331A31 — (I,111141). Hence B = mA. This fflﬁt which
has been proved can be written in the form )

N
M iz @y agy | @11 GL*{'»' s g
(46) MOz dzz  agy fz2q | m a1 d2z  dag 2y
MAz1  Gzy agy B34 aa\ W3z dgg 34
My ey ey oy AT iz gy oag
. N
In general, let A and B be determriffanits of order # whose sym-
bols ave respectively W
W
Gir e an | W8 [ By - bin
{(47) - . ‘| and
. RN . . .
iy b '<‘~&n'aa [ bﬂ,l e bnﬂ.

Let m be any nuthber, and let ¢ bp an arbitrary but fixed integer
such that 1 @& 'n. Jet each element in the #th eolymn of B

This h hesis will he expressed by tho statement that a column
of B m times the corresponding column of A, The following
thearere will be proved now if n is arbitrary,

N\ "THEOREM 0. If a column of B is m times the corresponding
column of A, then B = mA.

No new ideas are involved in the proof of this theorem if # i
arbitrury, By hypothesis

¥

b,‘g = M (3 = 1, 2, trey ?’E,)’
(48) '

ba"=a%‘f (i=1:2:"';n; J;ét)
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Now, by theorem 8 applicd te A and to B, it is true that

A =3 (=M asda,
i=1

(49) g
B = E (—I)H_tba‘;Bs’z-

i=1

By equations (48p) it is true that

(50) ;"1 i = Bﬁ (’L = ]., 2, ey, n) A
AN
Tf (48,) and (50) are used in (49y), it follows that N

il L "‘}c.
G B = (=Dt magds = m Y, (— D ante
i=1 i=1 N

Hence by (49} it is true that B = md. \

A theorem analogous to theorem L0 willdigw be proved for rows.
Let s be an arbitrary but fixed integersmieh that 1 = s < 7. Let
by = may; (=1, -+, 0), bij = a:,;j:(j# 1, +++, n; %5 s). This
hypothesis will be expressed by tha statement that a row of B is
m times the corresponding roxvael A. The auxliary determinant
(' is the determinant whose.sjnfbol is obtained from the symbol of
A by interchanging rows@md columns. The suxiliary determinant
D is similarly obtained fraom B. Then by theorem 5 it is true that
C=4and D= B\\Nuw, by theorem 10 applied to ¢! and D, 1t
is true that D ='mC. Henee B = md. This completes the proof
of theorem W

THEO}b@;i\ 11. If a row of B is m limes the corresponding row
of 4'1,\&&71 B = mA.

,,ji)é’terminants may be added, since determinants are merely
iminbcrs. TTowever, in the following important case this addition
may be accomplished merely by using the symbols of the determi-
nants. This case will be illustrated now if » = 4. Let 4 and B
be two deferminants of order 4, with symbols (41). By hypoth-
csis let

(52) by—ay (=234 i=1234)

Tt is to he noted cspecially that no relation is assumed between
the elements of the first column of A and the elements of the first
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column of B. Since (52) are precisely (425), it follows that {43)
and (44) are true, and hence
53) A+ B =(ay + bi)A 1 = (@2 + bay)Agy
+ {aa + bs1) Az — (ay, + bay) Ay,
Let € be an auxiliary detorminant whose symbol is
11 o g |
. N
(5_1) [ ) - * ' N

>,

\ A

‘ o v ey | Y \
Expansion of ¢ by minors of the elements of its ﬁnst‘ié&umn gives
pE 9/
(55) C =110y — 3,051 + 3103 “~C4'§§4\£-
Now let

x.\\.;
G =an + by (I=1, 2,34,

(56) _

Cij = ayy U=1L08= 1,2 3, 4).
By (565) it is true that Q ’
(57) Coy = Au(;;‘(.‘iv‘—— 1,2, 3, 4).

Ihmmhy@ﬂand@&)gﬂ?%)mmtmeﬂmt
68) €= (ay; + bll{ﬁ; ~ (@21 + o)Ay,

N\ T ey + bg1) 431 — (4 - bar) .
. r ':":',
By (58) and g‘:\@;ﬁ, 15 true that
(59) N C=4+4B
oy &
£ 3 . . .
Th]S,@C‘lf which has been proved ean be displayed in the form
'|t11"1\~:’{3f12 813 Gy |bl1 Ty @13 @4 Q+bi a1y a3 an
ey Qo oy any 4 bot azy a3 ag, ~|@iTba app Gy agy .
g31 Uga 3y dgy ba1 Gg2 g ay, @31+ba1 Gue ags agy |
Q41 Ggp G4y Qe bit @an Gy agy @116y @49 a4g 044‘

It follows from the preceding proof and theorem 6 that an analo-
gous statement is true of two determinants of order 4 whaose
symbols have corresponding olemonts equal in the second, third,
and fourth rows. Thig completes the proof of theorem 12 if
=4 =1,



OTHER PROPERTIES OF DETERMINANTS OF ORDER n 157

No new ideas are involved in the proof of theorem 12 if # ig
arbitrary. By hypothesis

(60) by=uay (G#& (=1, n).

Let (' be an auxiliary determinant whose symbol is

€11 st fIm |
o
t\\.
Cnl e Cnn /‘\’\\NZ"
1 \“/
Expansion of 4, B, C by the flh column of each give\s‘.‘g’
A Z ( l)H_ aziAt!: \\:\\
=] y
ﬂ, \
(61) B=>"(- 1)*“%3,;,
P
O = E (“gglg’;ﬁf‘cﬂa;;.
=l
Now let A\

G = Qg ‘i:'b%‘;‘; (?' = ]'J T ?1),
(©2) RN
C{j:@{&r} (J#t; = -Il-r "'Jn)‘

By (60) and (622), it is true that

(63) ’Bgz =Ady Cyp=Ayz (=1, --,n.
x'\’
“":11b5t<u’ogéﬂ from (63) and (62;) in (61} yields
N n .
Q.\ 4= Z (“‘U“Hﬂa‘sﬁm
N® =

o z
o B =3 (~1),d,,
=1

¢ = ; (=1 ay + bi)Ag.

Henee ¢ = 4 + B, This completes the proof of theorem 12 for
columns. The statement in theorem 12 about rows follows from
that about eolumns by theorem 5.
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5

THEOREM 12. Let A and B be delerminants of order n. Lot ¢
be an arbitrary but fized integer such that 1 < ¢ < q. J [ each ele-
ment in the symbol of B which is not in the th column equals the
corresponding clement n the symbol of A, then A + B 4s tndeed ¢
determinant. I'he symbol of the sum A + B s oblained from the
symbol of A by replacing each element in the tth column of A by the
sum of this element and ils corresponding element in the ith colwmn
of B. The statement which is oblained from the preceding sevn-ten"cEs
by replacing the word column by the word row s alse true.

Oy
PROBLEMS o\
In problems 1, 2, 3, 4, 7, 8 prove the stuted eqialities. ,u}" 3
203 -2 3] 1 32 3 g0l
e T 4‘_3\4 TN 4
' 3 —¢ 12 g~ ‘ 1 —20WV ¢ 3
2 1 —1p 5 IR S (1 5
7.\
-1 2 10 7 | =149 2 7 [
g 2 1 20 1 ‘ B S A 4 -1
’ 3 1 -5 21 7y 1 2
L7 oo sl N7 o g
2 72 &8V 2 3
-1 7(-Ips 2 47
3 1 7 1 g|=0
2 e -0 5
4 2 2 7
AE3 41 41y 4.9
& oY 3 1 -1 2| =90
AV 1 7 0 3
5. Writie,\ﬁh} following determinant as g suin of two determinants:
~ 2 3472 -2 -3
=\ -1 T4+ T7(—1) 2 4
A L =247 4 3
\\ 2 1472 —10 5
-1 2 2 7
6. Write| 2 T 43 1+41 FTA-) 1442 a5 4 sum.
3 1 ~1I 2
1 7 o 3
2 3 -2 -3 2 347-2 -2 3
7 | —1 7 2 4] -1 T4 7(-1) 2 4
1 S 4 3 1 —247.1 4 3
2 1 —10 5 . 147.2 —10 5
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N

-1 2 2 7 —1 2 2 7
8 21 4 —1| | 24+43 14+4-1 444-1) —144-2
‘ 31 -1 2| 3 1 -1 2
| 17 0 3 1 7 0 3 [
9. Apply theorems 10 and 11 to the determinants:
I 1 0 10 b E 2 1 5 2
31 - 7 6 7 -1 1
4 =2 2 -1 l 0 -8 -2 4
-3 3 & ¢8| -2 o 1 3 2\
10. Apply theorems 10 and 11 to the determinants: o Y
¢\
2 7 2 I 1 3 2 3N
1

1

-5 10 0} 1 -1 4 Al

3 08 —1] | -2 2 —6,.49V

-1 6 41 5 0 § o7
Another important property of determinantgvwill be illustrated

now if n = 1. Tet A and B be determip@@j}; with symbols (41).

Let m be any number. By hypothesig et

bU &5 (.} = 2: 3; '13;:,:{": 1, 2; 31 4):

Y
NS

L2 =]

1l

(65) R\ Y
ba = aa + mag, N

Hn=4andt=1in thddrem 12, then

e ¢ aq: a
“‘\ 13 12 13 14

\ "F Mgy ag 23 24

.
£\
B =4
\ mdzy  fag Qa3 Gug

N My G4z gz Gy
b\
ITence by Ahetrems 10 and 4
E”\". a
’\\‘,a 13 ai1a 13 14
O\ fis & a3 Tay —
RO ey At mo=-4

NS 33 3z [£5:5:3 Qa4
&\ Q43 4z Ogy U

3
This eompletes the proof of the following theorem if 7 = 4,8 = 1,
i =3

Treormy 13. Let A and B be delerminants of order n. Let m
be any number. Let s and t be two distinet tntegers such that
I <s<n ! <{=n Ifeach eement in the sth column of B s

the sum of the corresponding element in the sth column of A and the
product of m and the corresponding element in the ith column of A,
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while each element not in the sth cohemn of B equals the corresponding
element in A, then B = A. The Stalement obtained from this log
slatement by replacing the word column, by the word row 4s also true,

No new ideas are involved in the proof of theorem 13 if # is
arbitrary. DBy hypothesis

(66) b§j= ﬂ,z'_f (J?éé, g = 1_, "',??,),
b{s = s ‘{“ma{: (‘3 = ]., ey ?’L)‘ £\
Tet € be an auxiliary determinant with eleraoniy ¢ such that
R
G = s =1, n), O
7 E 7 ' » A
Cis = (?' = 1} T, ?1). )

Then by theorems 12, 10, and 4 it iy trge t}mft\B = A 4+ mC,
Sinee s = ¢, the sth and tth columns of € afeNdentical, o ence
C'=0. Hence B= A, The last statenge@f of theorem 13 is g
covollary of the preceding statement in theorem 13 and theorem 5,

Theorems 10, 11, 12, 13 are constandly used in the evaluation
of determinants with numerieal e].gmérfts. Thus, if D is the deter-
minant on the left-hand side of ¢he’ cquation in problem 1 in the
set of problems on page 158, ther a first step in the cvaluation of
D is indicated in that probletn. A second step iz indicated in
problem 7. Then in the déterminant on the right-hand side of the
equation in prol)1u1n,'§{i$. ¢ factor 2 would be removed, and the
second . column simplified. Remaining steps will bo given now.
Thus : O

2\::{?7' -1 -3 L2 17 —141.2 —3(
D=gl700 1 4 gl ! ¢ 1T+1(-1) 4
5 2 3 1 5 2411 3
W2 -5 5] | 215 _541.9 5
SO 217 1 3 2 17 1 —344.2 J
\326(4 0 0 _slmL 0 0 444(-1
i 5 3 3/= 1 5 3  344.1
J 2 15 -3 5 2 15 —3 544.9
’ 2 17 1 5|
-1 0 o0 ¢
‘6} 1 5 3 7
2 15 -3 13
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_ . 7 1 5
dence 1 = 6(—1)*T{—=1)Ay, in which Ap; = | 5 3 7
15 —3 13
17 1 5 17 1 5
Now Ag; = {5+ 1-16 34+1(—3) 7+ 1-13|=[20 0 20
15 -3 13 15 —3 13
7 1 5 17 1 5N
=20 1 0 1{=20 1 0 AL
15 —3 13 15+3-17 —-3+3-1 13§35
\/
17 1 5 '\‘“z
=20| 1 0 I|. Henco Ag = 20(—1)*2. 1@2§u 66) = 760.
66 0 28 .\\s

Thoerefore D = 4560. In practice many.\@b the preceding steps
arc omitted, and often steps are takepdsimultaneously.
"N/

L >

PROJHQEM%

1. Complete the evaluation of ‘l.hc determinant on the left-hand side of
problem 2 in the sob of problefns. on page 158; a second step is indicated in
problem 8. AL

e MR N

Y 31 0 4

2. Evaluate PN a\ 5 2 i 5

> N7 1 4 2 3

b \,}
3. Lva,lt{h(e D Dy, D, D3, Dy for the equations
.%"' Br4-By —Te4+1Bw= 1,
N —z b2+ 5+ w= 8
& N

~\J G4+ g+ 2+ bw= 2

bet+ y+ 2+ w=

4. Evaluate D, Dy, Dy, Dy, Iy lor the cquations
s+ g+ - w= 6

2z + y + 5z -+ 2w 3,

=0y — 4+ w= —3,

S5z =20+ 2+ 2w = 4,
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5. Evaluate each of the determinants:

1 2 -1 4 7 i 1 -5 4 3 [
2 1 0 3 5 4 -3 D 1 4
i 2 1 2 3, 7 2 5 1 -1
-9 3 3 2 2 0 —2 1 4
5 -1 -2 1 -1 73 2 5]
6. Evaluato each of the determinants:
—7 2 -1 3 _» 5 H 2 -1 4
—5 1 2 4 0 —5 4 9 7 A
—~12 4 301 20, | -4 3 5 —2 ).
4 -1 -2 g -1 2 1 3 "\%”
| —~1 2 1 5 —3 9 -3 0 T

6. Laplace’s development of 2 determinant of orde;:‘fz‘.’ ’}~Multiplica-
tion of determinants of order n. In this suct.iqg'\a&mle will be ex-
plained by which any two determinants of thy same order can be
multiplied merely by operation on their syuihols. It will be found
that the rule is more complicated than/®he rule for addition of
determinants of the same order explained in theorem 2. Ttisto
be noted, however, that the hypothe:si;-i in the rule for multiplica-
flon of determinants ig mercly that the determinants be of the
same order, whereas the h ypothasis in theorem 12 is this condition
and a condition of equality ot certain of the eorresponding ele-
ments in the two symbols, 'lIlustrations of the rule for multipli-
cation of two determims:nts will be given. TIn {hese illustrations
the rule will he P .o(éd’ by actual multiplication. Later the rule
will be proved in genteral, not by actyal muitiplication, hut by use
of an importag. ’property of detorminants, This property is
Laplaco's c!cv(ﬁopment of a determinant, It is analogons to the
expa-nsiqlg\p}d}:)erty of theorem & and theorem 9.

Let {K&ﬁd B be determinants whose symbols are

N & b a
‘(ﬁ&} ’ ¢ 4 g

and

\réspectively. Then 4 = 4q — ¢h, and B = a'g’ — V. There-

fore AB = (ad — eh) (a'd — 't} Tence

(G9) AB = add'd’ — gy _ cha'd’ + cbely’,
Now let (' be an auxiliary determinapt whose symhol is

[ ag’ +be i + b
0 | o+ de Gy g I
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Then ¢ = {(aa’ + be')eb' + dd'y — (ea’ + de’} (b’ + bd'). Hence
(71) C = ga'dd’ — de'ab’ — ca'bd’ -+ be'eb’.

By (69) and (71), AB = €. Therefore by (68) and (70)
(72) a b ‘ ag’ + b’ gb’ - bd

c 4 d’ co’ +de’ b +dd

a |
cl

This rile for multiplication of lwo determinants of order two is
ealled the row-hy-column rule of multiplication, because thesale-
ments in the rows of A are multiplicd by the corresponding ele-
menta in the columns of B, Thus, corresponding to theelethents
a, b in the {irst row of A are respectively the elemer}ts;.‘d’, ¢’ in the
firat column of B. These eorresponding clements g%xfe the products
aa’ and be’, whose suin ag’ -+ be’ is the elemqniaj\ih the first row
and first column of the product symbol.  Apdapy; corresponding to
@, b in the fivst row of 4 are respectively ¥ ,Qsii’in the seeond column
of B. These corresponding elements give $he products ab’ and bd’,
whose sum ig the element in the filsbow and second column of
the product symbol.  Similar st;ytninents ¢an be made to explain
the other elements in the produes symbol,

The proof of the row—by—jéol{imn rule of multiplication of two
determinants of order thréet will be given now. Let 4 and B be

11 Gm“‘,\ﬂm by b bis
(73) a1 gy as and | bay  fzz  baa
@31 (\fa2 033 by by buy

Then, as in/MdY) of chapter 5,
(74) A ar109za33 — Q11032825 + A21932013
.'s’\ — a1t oz T Hailiedas — G31@aadis,

§ ?:5) B = b]_]_bggbg;; _ bllbggbz's + b21‘532‘bl3

N — bo1byobas + barbisbes — barhaabis.

Therefore AR can be found by multiplication of the expressions
in {74) and (75). This result will contain 36 terms and need not
be digplayed here.  Now let £ be the auxiliary determinant formed
from A and B by the row-by-column rule. Thus E has the symbol
U asbitabntanba  aubietoubntadbe abiz+abs +aubs ]

(78) | ambritomber +ambs1  ambrztHanbntonbsn  enbitanbs +agshas |-
@by +aagbot +asby  @nbrtambntasby  asibistanbntasbas




164 DETERMINANTS

By the definition of a determinant of order three, % is a sum which
can be obtained from (41) of chapter 5 by replacing a;; there by
aith; + @abe; + agba; here, The result can be simplified by per-
forming the indicated operations. Tt will be found that the [inal
exprossion for B ig precisely the same as tho final expression for
AR which was obtained by multiplying (74) and (75).

PROBLEMS
N
LFind ABby @2 it A=| 2 3| pa| 3 4| o by
' -3 7 2 ol OP&
evaluating 4 and B and multiplying the results. . ] 7\
. .| -8 7oL 8.\
2. Proceed a8 in problem 1 for 4 = .‘ 3 _o ‘ , B = A\’ || .
3. Write and evaluate the symbol (76) if A and B are réspectively
&/
(28 7| |5 7 s
9 -2 51, s 9 N
3 5 4 4 3 .\\QT;Q
$
Check by evaluating 4 and B and multiplying fheresults.
4. Proceed as iv problem 3 for A\
4 2 3 A3 2 -
d=| -7 5 2 ,V\‘B:F; 7 -3 9
-8 9 88 14 5 9
8. Proceed as in problem 3 for N
3 dN2 3 -2 2
4=17,4(3% o], B=|5 g 1
KN—2 9 0 7 4
8. Proceed as infpjrbblem 3if
N5 -3 2 0 -5
BT 2 gl pals 7 (0
Ol 1 o 4 -3 5
7.33}]%‘13? the row-by-column rule to write the determinant symbol I of AR if
(NS 2 1 0 -1 2 1 -3 0 ‘
NY -2 3 5 o 3 -1 2 1
NA=I D e 4 mnd B = '

—2 5 =1 2z
4 -1 3 0 -2 1 4

Check by evaluating A and B and multiplying the resuits.
8. Procecd as in problem 7 if 4 and B are respectively

1 2 1 1 -1 5 2]
-1 3 o 4 0 2 7 1 [
o 2 1 —pf and 2 3 1 o
5 1 2 3 -1 1 2 -1 [
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The method of direct verifieation of the row-by-column rule will
not be uged in the proof of that rule for determinuants of order #.
In the general proof, however, Laplace’s development of a deter-
minant of ovder # and theorem 13 will be used.

A lemma which is basic in the proof of Laplace’s development
will now be illustrated if n = 5. Let D be the determinant whose

symbol i3
11 v s

. . . O\
(77) . . N .

2N

N
@51 v @5 y W
. - . . N
Therefore, by definition, D is a sum of 5! signed produets, Among
X Ve
these 120 signed produets the products AN
+ a1022033044855 1121&12{33%4&-55
X' o
— 1102203305484 T+ azgl'a}l:ssﬂm%s
S }
+ 11009043054035 7T E21R120430541035
— 1102243034055 QN 021012043034055
+ Q1100005303405 — O21012053054045
— @y102005504alas T G21012053044035
occur. These twelve\signed products have a very important
common propertmﬂd this property is possessed by no other
signed product ©f D, :
This propefy is explained easily n terms of the new idea of
complementary minors. Thus, the two minors

&
9 ; 3z @3z $35
. a a
WIN N 11 al 2| and | @z @ Q45
AN Gor o @ss  Usa  O56

a\¥/ i . .
e complementary minors in D. Again,
ez flag U235

T
(80) o M2 and | oas e O3
Gat Gz sy G5 055

are complementary minors in D, Again,
13 14 &15

a
(81) 31 %2 and | aps  Gea 025
Gpr  Osz ayy  Gag 045
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are complementary, It is to be noted that ton two-rowed minorg
are formed from the first two eolumns of D. They are the two-
rowed minors in (79), (80), (81), and

I @11 12 BUT ST [ a1 Qoo
| Q41 Ggp |’ ds1  asp |’ | a1 AT
{82) |
fa1 gy Q21 gy [ Qa1 @39 | | A g |
| day T4z 251 sz |’ 223 tap |’ 251 a.sz'\

Now, if M is an arbitrary one of these ten two-rowed minoks,
then, by definition, the wminor ¢ which is complemeniary to M % D
is the three-rowed minor which is obtained by deleting fom D the
two rows and the two columns in which A appeargsiThesc ten
pairs of complementary minors, determined by th<§~31'rst two col-

umns of D, are very important, NN
Now the common property of the twelve Bibmted products (78)
of D will be explained. The minor all.*:\\alz of D is a num-
Qo " Ugz

ber, namely, the sum Ul ~— anapot’the two terms + g
and — ay,ay,. Also, the first term, N ntze 18 a factor in cach
signed product of the first cohx;ﬁnzbf {78), and the second Lerm
— @zidi2 I8 a {actor in cach §ignéﬂ product of the second eolumn
of (78). On the othor haqd,‘if ‘each signed product in 2 which is
different from the twely. “sitned products (78) is digplayed, it is
found that no other Sigﬁe preduct in D eontains either -+ o109,
OT — a31015 88 a fuckor. Thus the common property that distin-
guishes the twelyé Signed products (78) i £ is that cach has as a
\% 11 Gy
4 iz fian

The lefima which is basic fop the proof of Laplace’s develop-
ment g concerns the signed products {78) and the particular
conplementary minors (79). Let M, designate the two-rowed
mindr in (79) and ¢, the three-rowed minor in {79). Thus C; is
be complementary minor of A7 1in D, Now, by definition,

A\ . .
factor one of {hﬂe two terms whose sum is the minor

(83) M = anya95 — 21612,
B1) €y = aygagqass — U33054Ga5 T Gaglisetas
T 43034055 1 Qsalisafay — O53044035

By actual multiplication of (83) and (81) the product M, is
obtained. The important fact is that this result is precisely the
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gum of the twelve signed products (78). This completes the preof
of the following basic lemma f n = 5, & = 2.

TiemMa 4. Let n be an dnteger such that n 2 4. Left D be a
determinant of order n. Let k be any integer such that 2 = k =
w— 2. Let My be the k-rowed minor appearing in the upper lefi-
hand corner of D, Let €y be the minor of 1) which is complementary
to M. Then the sum of all the signed products in D, each of which
has one of the terms of My as a faclor, equals M, C. N\

In the proof of lemma 4, if n is acbitrary, let U designate)the
sum of all the signed products of 1, cach of which bas €%rm in
M, as a factor. Since M, is a sum of terms and Cyd5 a sum of
terms, as in (83) and (84) if n = 5, therefore by at‘tu&l multipli-
cation 3 is & sum of terms. This last sum v-‘ﬂ “be designated
by V. A one-to-one correspondence will be eatabhshed between
the terms whose sur is {7 and the terms whose'sum is V, such that
corresponding terms arc equal. By larﬁqfa 1 it will follow that
7 = V. This will complete the progf oflemma 4 if » is arbitrary.

First it will be proved that eachferm in ¥ determines a unigue
term in U, and that diffcrent t(,Lms i V determine differcnt terms

".' 11 e Qg

in U. Let the sylr%{iljﬁhr Dbe|- -« |. ThenMis

N

Qr1 et Opn

the sum ijiilze’\k! signed products of the type
(85) \&’})‘ﬁam C++ Gy, in which 47 -« g Is an
arvangement of 1, - -, k, showing p inversions.
\J USO, ", is the sum of the signed products of the type
(86) (—1)"a;, ppt1 * " Fany 1 Which Jei1 - Jn 15 an
arrangement of & + 1, ==+, 7 showing w inversions.
Therefore cach term in M,Cy is of the type
@) (—1)Va;; - Gigp(— 1) "Gyt = * Gy I Which
the conditions stated in (85) and (86) hold.
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Now (87) can be written in the form
(88) (—1)PFug, ... Fighip o fot1 e

Also, by the conditions stated in (85) and (86), 4, --- Uedhr o g
is an arrangement, of Lo B B+ 1, - n Finally, since cach
of 41, ++- 4 is less than each of Jidtls * vy Fn, the only inversions
in 4 --- kgt -+ J, are the inversions in ¢, --. ix, and those in
Jeg1 *+* Fu. Therefore ~
B9 4 gy e Ju I8 an arrangement \

of 1, -« showing p -+ -w\iﬁ{fersi('Jns.
Therefore (88) is 5 signed product in . Also (88)0has the term
(85) of M as a factor. Henco (88) iz a term AR, Thus it has
been proved thut each term in 17 determines'a:\tmique term in O
Also, two distinet terms in V have distinefNnims (87), and hence
their corresponding terms (88) in Ir arg’ distinet,

The preceding argument alsg shows.’bjhéjt the number ny of torms
in Vs less thun or equal to the sumber 7y, of terms in &7, In
order that lemma 1 may be ysed it will now bo proved that
fig = ny. It is sufficient to ,p%fm;e that there are no more terms
in U than in V. This wilkBe done by showing that cach term
in {7 is determined by a'term in V. By the definition of I/ an
arbitrary term in {7 ix'éf the type

O . _
(90) (=1, AN et - @, in which I -~ ¢, 13 an

arrangement of 1, ... 4 showing ¢ inversions, and
AN

a';\'-;'- 2 is an arrangement of 1 -.. 7,
Hencedudy - 4, is um arrangement of & - 1, .. 5. If g, is the
nu;r,l"bﬁ' of inversions appearing in ¢, ... i and if ¢, is the num-
hews"of inversions appearing in 4 ... tn, thon g = gy + ¢s.

<*Jlénce (90) becomes

(91) [(—D)2g, ... aigk][(_'l)ﬂaik_”.k-i-l Creag ]

The first bracketed expression in (91) is a term in My, and the
second bracketed expression in (91) is a term in €1, Therefore
the expression (91) is in V', Also (91) determines (M) in the same
way that (87) determined (88). IHeneco each term in {7 is deter-
mined by a term in V., This completes the proof of lemma 4,
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PROBLEMS

1. Write the symbols for D, My, and 1 if mn =4, k¥ = 2. From Table T
of seetion 1 write T, that is, the sum of all the signed products in D, each of
which has a term of My as a factor. Write M1 as a sum-of terms, and write
€ as a sum of terms. Multiply these results and thus find ¥. Check that
{7 = V. This verifics lemma 4iin =4,k = 2.

2. Verify lemma 4ifw = 5, & = 3.

Another lemma which will be used in the proof of Laplace's

development will now be illustrated if » = 6, & = 2. This yill
involve the determinant (77), the ten two-rowed minors fram.ips
first. two columns, which were listed in (79), (80), (81}, ,(82), and
their complementary miners. Tet M, designate theftwo-rowed
minor in (80), and Cs its complementary minor. AJ.E ithe signed
products in 72, cach of which has as a factor on€’ef the terms in
M, could be displayed. Also expressions for Mgand (5, analogous
to (83) and (84), could be displayed. Thentt could be verified
that there are twelve signed produets ig~D, each of which has as
a factor ono of the terms in M, and that their sum is —M 2Cls.
However, this fact will be proved‘i’ﬂ’;an eagler way., Let IF desig-
nate the determinant \ N

CR Y
NN

arp SS% 0 615

5] 35

(92) 4 }21 25
\\ an a5

W 51 a5y

Therclore E '=::\—.D‘ It is to be noted that M is the two-rowed
minor in thiaipper left-hand corner of £ and that the minor in E
Compiem\g&tt:ary to M, is precisely Co. Hence, by lemma 4 with

|

D, ngkv M, Oy replaced respeetively by B, 5, 2, My, (3, it Js true
:[;h.ﬂ'ﬁ'thc sum of all the signed products of E, cach of which has
ﬁ)mz" of the terms of My as a factor, equals M2Cs. Multiplication
v —1 proves that the sum of the signed products of D, cach of
which has one of the terms of M, as a factor, equals — M5y
The analogous yesults for the remaining two-row :d minors of
the first two columns of ) could be proved separately. However,
a general method, which will be used in the proof of lemma 5 if
# is arbitrary, will now be illustrated. Tet M be ihe minor

! . ]
; :;-91 a2 |' of D, and let C be its complementary minor. Let &
51 Osg

N\
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he the doterminant

Ggr  OGzz 't G2
a5t G5z " 0Os5
(93) a1 Gz - s
d31  Gzz - Cas
Gq1 @4z T Cas

Thus E is obtained by the following sequence of interchanges: ~
first  and second rows of ) to obtain Dy; .

AN

fifth and fourth rows of D to ohtain Dy; o\ °

fourth and third rows of Ds o obtain 3?1:;;}«.
third and zecond rows of Dy to obtmi& .

Tt is especially to be noted that, in forming thie*auxiliary determi-
nant % from 7, interchanges of rows weré/made in such a way as
to retain the relative positions of the ratedof M and the rows of C.
Since the first row of M was the r'pw: numbered 2 in ), therclore
there were 2 — 1 interchanges dites to this row. Similarly there
were 5 — 2 interchanges duete the second row of M. Henee
E = (—12tt—2p, chc}efoﬂ = ). Tt follows as in the pre-
ceding proof that the wifh, of all the signed products of 12, each
of which has a term R as o factor, equals + €, Tt is to be
noted that (—1)*R52 = (—1)*7172 and that the integers
2, 5, 1, 2, whose sum gives this last exponent, are the numbers,
2 and 5, of the\tows of D in which the rows of 3 lie, and the num-
bers, 1 ande;'of the eolumns of £ in which the columns of M lie.
This, ik for obtaining the sign to be prefixed to the product
MC gives the sign which was found previously in lemma 4, because
thgfriaw numberg in M, are 1 and 2, and the column numbers are
*I and 2. Hence the new rule gives (—1)112 T2, (7 thix is the
value in lemma 4. Again, the result —Mo(y which was found
earlier can be obtained by this rule. Thus, the row numbers in
M, are 1 and 3, and the eolumn numbers are 1 and 2. Hence the
new rule gives (—1) T3 204,C5; this equals —MyC3 which was
obtained earlier.
This general method will be illustrated again. Let 3 designate
Ty G4z
@51 3z
of D over the 4 — 1 preceding rows, and in the result pass

the minor Then form E by passing the fourth row
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the fifth ros over all the preceding rows except the first, that
is, over 5 —2 TOWS. Therefore 72 = (—1)* 172D,  Tlence
K = (—1)*"5+1+2n This moethod s applicable to the other two-
rowed minors in (81) and (82). Therefore lernma 5 has been
proved if » =5, kb = 2.

Losma 5. Lel n, k, D be as n lemma 4. Tet M be a k-rowed
minor in the first k columns of D.  Let the rows of M e in the rows
of D which are numbered %, -+, e Let C be the minor of I} gz
which is complementary to M. Then the sum of all the signed prog-
uels of D, each of which has one of the ferms of M as @ factog,\a8)

£\

(__1)€1-l~“'+ik+l+---+chM*C 4
PROBLEMS \\
1, Verify lomma 5ifn = 5,k = 2, M = ‘ z’; Z?;\ \
P : i an | 32 LD
2. Procced ag in problem 1if M = ‘ PN N
ast B p

gz 22
4 42
AN '
. . a
4. Procead as in problem 31f M =< ! 5 ‘ .
RS LT

[F s
3. Verify lemma 5ifn = 4, & =2, M ,=j

No new ideas are involied in the proof of lemma 5 if nend k
are arbitrary. The u{ﬂiﬁry determinant E is formed from Dby
the following inten(%uges of rows: first, row ¢y of D s passed
over the prcced’mﬁ; i — 1 rows; then row 7, over all the pre-
ceding rows ekcept the first, and hence over @g — 2 TOWS; ~*°;

finally, row Qg over the preceding % — k& TOWS. Hence F =
— (__1)%1+‘"+"'L+1++kD

(- 1)£1_}\\Q°'42'+' +i—+[) Therefore &
Now, :‘ghe k-rowed minor in the upper left-hand comer of E
is M, and its complementary minor is . Hence, by lemma
4 Swith D, M, ¢y replaced by E, M, C, and by multiplication
by (—1)':1+"“H"+1+'”+k, the result stated in lemma 5 is ob-
tained.

Laplace's development of the determinant (27) by dts first two col-
umns will now be proved. Let M designate the minor from the
first two columns of D, whose rows appear in the 7th and sth
rows of D, and let C;, be the minor of D complementary t0 M
Thus, Ms designates the two-rowed minor of (79), which was
previously designated by M. Agan, Mg designates the two-
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rowed minor which was proviously designated by M, and My,

designates the minor a1 G | . It will be proved that
@51 Qa3 |

(9% D = 4+-M3C — Mi3Cry + M Cry — MisCy5 + Mog(lsy
— MpaCos + MasCas + MysClsy — My5Cas
+ MysC5

Fiquation (91} can he written in the form N
oA
(95) D = E (—-] )-H—a-l-l +2ﬂ’f.iscis- P N
12{Ts 55 3 Ny
This will be proved by cstablishing a r)ne-t0-0r3ef.(}(u'fespondcncc
between the signed produets whose sum is D anth the terms which
appear in the ten products on the right of (98N MNow it was proved
in the special proof of lemma 4 if n = 5,:x5\’hi’ch preceded the proof
if n is arbitrary, that cach term in Af 12014 cquals a unique signed
product in D, and, in the speeial ptoefiof lemma 5 if # = 5, that
each term in —My 304, equals a rhique signed product in D.
These facts illustrate the ge;lﬁgrél fact, which follows from the
gencral proof of lemma, 5, tl}’a,ﬁ ‘cach term in cach of the sums on
the right-hand side of (94 equals a unique signed product in D.
Also each term in M&\Js distinet from each term in Mz In
gencral, if the nuroRels 4, s are not the numbers 7, ¢, then cach
term in M, is dif%f}ﬂ}-t from each term in M. Hence all the terms
in the ten produdts on the right-hand side of {94} are distincet.
It will ngwBe proved that cach signed prodect in £ is deter-
mined by @yterm in one and only one of these ten surmns. By defi-
nition\\éf; D, an arhitrary signed product in (77} is of the form
(9’6)}; (= 1)"2:10,,204,38;,4045, in which ¢, -+ - 45 is an
;“\’ arrangement of 1, 2, 3, 4, 5, showing p inversions.
Now, either ;0. or —G18,z 8 8 term in M. Ilence the
signed product (96) is determined by a term in M 11isCyss 011 the
right-hand side of (94). A one-to-one correspondence, such that
corresponding terms are equal, has been cstablished between the
signed products whose sum is (77) and the terms in the ten prod-
ucts on the right of (34). Therefore, by lemma 1, their sums are
equal.  This completes the proof of (91). Thus the following
theorem has been proved if n = 5, k = 2.
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TrgoreM 14, Let 41, -, ix be inlegers such that & <mn, 1 £ ¢
<. <ip £ n. Let D be a determinant of order n. Let Mg desig-
nate the k-rowed miner of D whose columns appear i the first k col-
wmns of D and whose rows appear in the rows of D numbered
i1, +-s B If Cry designates is complementary minor, then

@97 D= > (— 1yt b R Oy
184 <fpZEn

No new ideas are involved in the proof of (97) il nand k are ,

arbitrary. It has been proved in lemma 5 that each term in each

of the proditets on the right of (97 ) equals a unique signed pr()duét

in 1. Also, each signed product in D is of the type O ’

ot

(08)  (—1)Pagy * Gl kt1 " Giow in which RO

) v Gpdpgy -0 o 18 AD arrangement of L%, n, show-

ing p inversions. O

But a5 - - - @y, or its negative is a t(-nmw]'.%;:zﬁm. Hence (98) is
determined by a term in M 5Cn on the'tight of (97). A one-to-
one correspondence, such that 001'1'e§pdnding terms are equal, has
boon established between the signediproducts in D and the terms
on the right of (97). This cogupletes the proof of theorem 14.

The Laplace development of e determinant (77) by s third and
fifth columns will now “bq proved. Leb M5 mean the minor

4 - +$ ) . .
hiy M5 \ ; let M},\\tﬁean. g3 025 ) 1p general, let M

Gz Q25 (43 Qa5
mean the minor of\M77) whose colummns are in the third and fifth
columns of D ahd”whose rows are in the rows numbered ¢ and s.
Lot d(}siglﬁte the complementary minor of M. TForm the
auxiliary determinant ¥ from D by first passing the third column
over thovpreceding 3 — 1 columns, and then passing the fifth col-
l.lmn\',bf' this result over the preceding 5 — 2 columns. Thercfore
DV (—13-1+5—25 Now the minor M of D appears in the
itst two columns of F, and the complementary minor to ihis
minor in F is precisely the complementary minor s of My in 1
Therefore, by (95) with D replaced by F, it is true that F =
(1) FIA2 T Multiplication by (—1)8~1+2 and
12i<s 25
substituiion from the preceding result gives
(99) D=3, (1M C.

1=i<r 55
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It i3 to be noted that the 3 and 5 in the exponent in (99) are the
numbers of the columng for which the Laplace development is
being obtained. In general, if § and ¢ are fixed arbitrary integers
such that 1 < j < ¢ < 5, then the Laplace development of (77)
by its jth and #th columns is
(100) D= 3 (=1L,

1=i<a=h
Equation (100) will not be proved here because theorem 1§ Nf
=25 k=2 i =4 fo =t gves {100), and theorem ]5 ~1f 718

31]’)1Lrﬂ.]‘V will be proved next, PR

TrarorEM 15, Leldy, - - -, 4y, J1, - -, Ju De tnlegers such that & < 7,
1= <<, Enand 1 £ 5; < <J;.‘5n, ‘Let D be
a defermingni of order n. Let M 15 des'ignatf' i{m)mu,m of 1) whose
rews appear in the rows of D numbered iy, -+ Nipand whose columns
appear in the columns of D numbered jy,, \., dr. Let Cyypy desig-
nate its complemenlary minor. Then L ¥
@y D= > (—1)“4_:'ETMHWI“+Jlkﬂfla].[ﬂolﬂ,[j]

I:i <. <ipSn X

In (101 41, -+, F1 are fixed {m’.@ @:1, - - -, iy vary over all sels of in-
fegers such that 1 £ 4) <« 7, < n.

\ PROBLEMS

1. Writo the La.pl\ae deve]opment if n = 5 and the columns are numbered
2, 4, 5; if the cnlumrm are numbered 1, 3, 4,

2, cheecl B n problem | if the columns are numhbered 1, 3, 5; 1f the
columns srequmibered 2, 3, 4.

3. Wri }1& Laplace development if » = 6 and the columns are numbered
L, 24 \{tyhe eolumns are numbered 2, 4,

4. \Proceed as in problern 3 if the columns are numbered 2, 3, 6; if the

crﬂuﬁms are numbered 3, 4,

No new ideas arc involved in the proof of theorem 15 if # is
al‘bitrar}n Let the auxiliary determinant F be obtained by pass-
ing the column in D which is numbered j; over the preceding
7+ — 1 columng, then the column which is numbered j» over the
preceding jo — 2 columns, - -, and finally the cohmmn which is
numbered ji over the preceding 7 — & eolumns.  Therefore

(102) D= (_1)51—1+J'2—2+"'+J'k—kF'

Now My ;) 18 in the first & columns of F, and its complementary
minor in F is precisely its complementary minor Cpp; in D
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Henee by theorem 14

1% F= (— 1yt R TR g 1 Clasa
1< <iEn

I (103) is multiplied by (—1)#~ 19k and (102) used, it i
fonnd that the result is precisely (101). This completes the proot
of theorem 15 if n is arbitrary.

Theorem 15 is Laplace’s development of D by an arbitrary sel of
L of ils columns. Laplace's development of D by an arbilrary set g
of & of its rows is 8 corollary of theorem 5 and theorem 15. It is
stated preciscly as theorem 15 is stated except that (101} istaey

2\

placed by R
(1049 D = E (__1)@'1-’:-‘"‘Hk-}«iﬁ-“+J'ki'1,fmrmcél:l}i}
1y iR \\
and in the last sentenee 1y, * -y i, arc fixed and j{, L. gy vary.
K7\
PROBEEMS . L ¢

1. Write the Laplace development if n £=:5’acnd the rows are numbered
1,3, 4; if the rows are numbercd 2, 4, 5, o)
2. Proceed ag in problem 1 if the ravn;. dre numbered 1, 2, 5; if the rows are

pumbered 3, 4, 5. o\
3. Write the Laplace developthent if © =9 and the Tows are numbered

2, 3, 6; if the rows arc numbe{id 1, 4, 5. .
4. Proecesd as in problexfi 3 i the rows ure numbered 1, 3, 4; if the rows are

numbered 2, 3, 6. \\

Laplace's deuql@ir;mmt will now be used to prove the row-by-column
rule of multi Bedtion of determinants of order n. The proof will be
given ﬁrat\lzfg\n _ 3. It will be proved that the determinant &
whose sythhol is (76) is the product of the determinants A and B
whosg\ By mbols are given in (73). Let G be the auxiliary determi-
gt of order 6 whose symbol 15

\ 4 11 12 [H] 0 0 0
(2523 a2 23 0 0 g

51 sz T3 0 0
(105) -1 0 0 by ba s

0 -1 0 Bba ez e
0 0 —1 Dbu b sz

First it will be proved that G = A5. Next it will be proved that

the number G, for which (105) 13 the symboel. equals the number
that E = AB.

E, for which (76) is the gymbol. It will follow
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Thus will be completed this alternative proof of the row-hy-
eolumn rule for multiplication of determinants of order three,
‘The Laplace development of & by its first three rows is obtained
from (104) if 7 is replaced by ¢ and f n =6, k=3, 4, = 1,
iy = 2, 43 = 3. Also, by (105} it is found that in the first three
rows of (7 each minor of order three, except the minor in the upper
left-hand corner, has at least one column of zeros und hence is
zero. Also the minor of order three in the upper left-hand eprner
i# A, and its complementury minor is B. ThereforoNg =
(_1)1+2+3+l+2+3AB = AR, '.\:\
Next, let (4 be the determinant whose symhol is olitaied from
the symbol (105) by adding to cach element of t-h;zu[mﬁ'th column

the product of ;1 and the corresponding elemgrljt: of ‘the first col-
umn. By theorem 13, ¢ = &, Also the symfbbl of € Is

My @z @z apdbn \U 0

Gz1 @z gz b0 O
(106) a1 gz daz aadyn 0 0

-1 0 o .0 bio by |
0 —t Q0N b2r Bag  bay |
0 0 —']: ) 1)31 bag 3333

Let 72 be the detcrmi“naiﬂs' whose symbol is obtained from the
symbol (108) of ¢y byyadding to cach element of the fourth column
the product of bap xfu%l the corresponding element of the second
column. Thertffo\@* ) = G, and the symbol of & is

G a11bir + arabyy 0 0

S G2 Gz a@uibi +oegeby 0 0

107y Rt G2 @y ambir - assby 0 0
A B 0 by bug
K\ 0 -1 ¢ 0 bie b

£ \ » 0 0 —1 b31 b32 533

" Let (/3 be obtained from G, by adding to the fourth column b3

times the third columm. Therefore G = G, and Gy is

‘ G Gz s @uibyy - gpebey +aishy 0 0

U21  Azz G2z Qoibyy + dosboy +-asghyy O 0
(108) | %t G:2  ag ay1biy + Ggabor + aggbs; O (UNS

—1 0 0 ] biz b

0 —1 0 0 bgz b23

0 0 -1 0 bsz  Das
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Tt iz to be noted that Gz was obtained from G by three steps.
In each step an appropriate multiple of the first, second, or third
colurnn was added to the fourth column. Also the symbol (108)
of G5 and the symbol (105) of ¢ are precisely the same except In
the fourth column. Similarly from G5 three more determinants
can be obtained by adding appropriate multiples of the first,
second, and third columns to the fifth column. The symbol of the
sixth determinant (f is the same as (108) except that the fifth
column is O
ayibre + @robas + 21abse O\
d21D1a + @oobag + aosbas o\ B
ag1biz + dagbes + aasbas Qo

0 N
0 »"\'\'
0 \Y

(109

Finally, three more determinants are abtai:pgii}rom s by adding
appropriste multiples of the first, second,, and third columns to
the sixth colurn. The symbol of the ainth determinant Go 38 the

®

same as the symbol of Gg except that the sixth column is

aybs + 65;9323 + G13bag
ag1b13. 8k Baghas 4 agzzbas
ﬂ&lglsh' @3abag + tg3bas
0
O 0
PN\Y; 0
Thercfore G\’z\Gg
Next, thoLaplace development of Go by its last three columns
will be\written, In the last three columns each mMinor of order
tbl‘eég ‘excopt the minor in the upper right-hand corner, has at
cast one row of zeros and henece s zeT0. This minor in the upper
right-hand corner is ¥, and its complementary minor bas the sy~

(110}

—1 0 0
bal 0 -1 0 1. Therefore the Laplace development of
0 0 -1

Gg iS
Gq _ (~1)4+5+6+1+2+3E'(—-1).

Therefore (¢ = E. This completes the proof.
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No new ideas are involved in the proof of the row-by-column
rule for multiplication of determinants of the samo arbitrary order
%, Let the symbols of 4 and B be

arg e Qyy bll e blﬂ

(111) . . . and

®a1 Tt g b1 SRR : ¥ O
Let E be the detorminant of order n having in its {th !‘O\{E;\E.}]('l Jth
column the number . \J

%
L
7%

(112) @irbij + agoboy - - - "J!-?.'nb-u;ru,"."t
\\

Then the row-hy-column rule states that A3 =7,
The proof of this rule uses an auxiliary ngtcrminant @, of order

2n, whose symbel is L&
Q11 12 AR .aiﬁ” 0 0
Ut Apz N Qnn 0 -+ D
(113) —1 0«} 0 byy - by,
0 \' dd e 0 b21 s bgn
\\)" 0 A byp v ba

It u;.‘ﬁ) be noted cspecially that in the lower left-hand corner of
(k13) there is an n-rowed minor in which each element in the prin-
“\tipal diagonal s —1 and each other clemont is zero. In the upper
N\ right-hand corner there is an n-rowed minor consisling of zeros.
Therefore, in the Laplace development of by its first » rows
each term is zero except the torm conteining the minor in the
upper left-hand corner. This minor ig 4, and its complementary
minor B. Therofore @ = (—1)1t +rtlt-dnyn _ 4p
Now therc is another auxiliary determinant H which is equal
to & #nd which has a very gimple Laplace development by its last
# columns. This determinant  is the last in & sequence of equal
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determinants obtained by taking j=mn-+1, -, 2nin suecession
in the folloswing operation:

mudtiply the first  colunn by by j—» and add to the jth;
multiply the second column by bz, x and add to the jth;

multiply the ath  column by ba,j— and add to the jth.

Then the first 7 columns of the syrabol of H are precisely the first,
n columns of (113). In the last n rows of the last 7 colurnns,of\JF
ench clement i zero. The elements fipyj in the first n_zows of
the Tust n columns of H have 1£¢=n and 1 < j,&n) The
element fj .4 1% precisely fhe nwmber {112} Therefobe the first
# rows of the last » columns of I form the symbel of E. The
minor of E in H is (—1)", since the last n rows i the first n eol-
umns of H are preeiscly as they are in (113 -*{8ince each clement
in the last 7 Tows of the last 5 columns oL 18 zero, cach n-rowed
minor from the last » columns of I, except that in the first n rows,
is zero. Therefore the Laplace dy?eiépment of I by its last =
columns gives I = (——1)1+2+':':f"“:“”HH'"+2“E(—1)“. By the
rale for the sum of an arithmetic progression 1 +ooo 420 =
n(2n + 1). Therefore thé’ exponent of —1 15 n(2n 4 1) + 0.
Since this exponent i @.e‘ven integer, it follows that H = E. It
has been proved ea,lb'}er that ¢ — H and G = AB. Thercfore
AR = E. This completes the proof of the row-by-column rule for
multiplication \0‘1" “fwo determinants of arbitrary order 7.
7\

O

PROBLEMS

:,L-'\'US‘illg the row-by-eolumn rile, multiply the two determinants in prob-
@m.’i’ in the list of problems on p. 164,

2. Proceed as in problem 1 for the
list..

two determinants in problem 6 in that



CHATTER 7

SYSTEMS OF LINEAR EQUATIONS AND N\
DETERMINANTS A .
¢\
1. Systems of n linear equations in n unknowns, Crexnéra,l results,
which are analogous to the results obtained in chiipter 5 for three
linear equations in three unknowns, will he obtained in this sce-
tion. The methods of proof arc simpler thén those in chapier 5
because the general theorems of chapter 6.are available here. Let
the » linear equations in » unknowns Be.
g
au®y + apg + AW 1,3, = by,

%

),".‘
U1TL + OogTpb - - - o a9, = ks,

~‘N
*

0 -
) po “\ ' ’ )
af{@l;_l— Ungla + - -+ UnniCn = oy,

Let D desigpgtiq the determinant whose svibol is

A\
N @11 @ - gy,
\5“\;" a2'l a22 v oa a’zﬂ.
QN L
A .
~\J
\ / Op1 Ona b 10709

Let D; designate the determinant whose symbol is obtained from
(2) by replacing the Jth column of (2) by the column of constants
"":I: .rrs?g, Ty }ﬂn in (1)

It will be proved that, if 1, X2, -+, Ty I8 an ordered set of
numbers which satisfy (1), then

3) Dzy = Dy, Dzy = Dy, -+, Dx, = D,.
180
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Ty definition the symbol of the determinant Dy is

By a0 dpm
ko gz T ey

)

kn L] Tt Onn

Also, by hypothesis, equations (1) are true. Hence, by substitu- {\

tion from (1), the symbol (4} becomes A

| a1t 4 Grama +ooo b Qe @zt A1 | N

a1t + GoaTa fo ot Qe G cc Gan 40
. . }\
Q1T + @pos + 0t Gunn  Oaz 7 \., Ban

By theorem 12 of chapter 6 the d('termln.mt\(o) equals the sum

“0

Q¥ g vt G a1o®2 -\ Cafn Q2 Gin
Lo (tag " oy a22$2‘sii& —I— [ 7705 Oga *** dop
. . . - &N .
(G) . + ‘_‘):;
O
anlxl Qg - aﬂu‘ ’;, yola —I— e + Apndn (g ** " dan
The zccond detelmnm\b in (6) equals the following sum:
U122 al?«'&')‘ am ayarz b T a®a @13 0 G1n
Gaala a\so © - Qan Gag®y - O2a®a G2z " Gon
"\\ . - - L)
(7) \*V; +
R\
s aﬂ2T2 nz """ Qun Braly + ‘I’ (unln Onz " * " Gan

ﬁhpehtmn of this process shows that D; is the sum of n determi-
nants. Thus, let By, By, - -+, Ba be defined by

a1;7;  Gyp cc Uin
AgiT;  @pp cc O2n

® Bj=| ' S G=12

Up sty Ano e Gan
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Then

(9) D1=Bl+32+"'+3n-

Now, if C; is defined by

' iy Grz - Oygp

Q2j Oz -+ doy

w ¢=" S G=nzm,
Ay L% e Uy ¢ .< \“~\

then B; = 2;C;. Also €1 = Dy and ¢ = 0 if § > + Hence

(1) Bi=mD, Bj=0 (j=y2

Substitution of (11) in (9) proves (3,). Si%nflarly (3:) is proved
by using (1) in the symbol for D, anl'\\af equations (3) is proved
in this way. \ &
If iz, -, 2, is a solution of (Dwand if D = 0, then from (3)
D, By D,

(12) Ty = 5‘; 50;:‘—‘1‘5, Tty k= 3

This eompletes the proof of the following theorem,

THEOREM 1, Iggt’b be the determinant of the coefficients of the
n variables in ﬂae’\q\ﬁ?ﬁear equations (1), and let Dy be the determinant
whose symbol {8yobtained from the symbol of D by replacing the ith
colummn of W symbol of D by ky, -+ -, k. [ f D = 0 and if there 28
a solutz'qn{of (1), then that solhdion is the ordered sel of nwmbers
Dl/Q’E‘Dﬁ/‘D: Tty Dﬂ/D-

“I’t’\will be proved next that, if D < 0, then the set of numbers

¢DY/D, Dy/D, -+, D./D is s solution of equations (1). These

i

‘umbers salisfy the first equation in (1) if and only if ag(P/D)

+ @12(D2/D) +- -+ 61,(Du/D) =y, and hence if and only if
anDy + a12Dy + -+ -4 01,0, = k. D, and hence if and only if

(13) }falD - ﬂluDl - alng —_—r— O}lﬂDﬂ = 0.

Let E designate the number on the left-hand side of (13). It is
to be proved that £ is indeed the number zero. By definition

(14) E=5nD— anb; — azally — - — I )
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Also, the number Dy in (14) is the determinant of order = whose
gymbol is

ki @z @iz o G

ks 2z oy <+ dom
(15)

k, [£9] n3 L [

Hence, by the definition of a determinant, Dy is the sum ofnl)
signed products, Again, Dy is the determinant of order n }’{‘]ibsé

gsvmbol is «
a1 ki @y v G N
{21 kg gy - (i2a \\
(16) . . . . N\
N

Iyl }v'n {127 Y "s':.}rm
and Dy is a sum of »! signed prgt;hi:ctg. In general, each of D,
Dy, «»+, D, in (14) is a sum of whsigned products. One way to
evaluate the number (14) would be to substitute these sums in
{14) and simplify the resulb, "This method of proving that F is
indecd zero would be vesy complicated. Another method would
be to expand each ot\Qt,’ljl, .-+, Dy, by minors of a row or column
and to substitute these cxpansions in (14). This method of prov-
ing that % is indged zero would also be complicated.

A very simple method of proving that E is zero will be explained
next, hi'é}:r'net-hod may seem less direct than the expansion
methods\ ecause cxpangion of deferminants has been used fre-
qu.qr\lﬂ‘j'. Let o be defined by

e A\
\

\/ B, an 3 0 =
ke @m @2z ' Gm
kg (4575 ] a3 rre Oam

Then

(]8) Dg = ’_EQ-
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Again, by definition, Dy is the determinant whoso symbol is

ar @z Kk G vt Gin
dz1 251 ky dog Tt lag
(19)
1 Ong by Znq e {459
Hence, if 773 is dofined by O
~~ ’
by e we me - ap, R \)
k2 an tIag iz Tt e [NJ
. . . . - 2NN
(20) ks = AN B,
. . . . D
o))
ka 477 Gna fing \\ Ann
then .:t\\”
" Nt
(21) Dy = 1)

In general, the symbol of D; is »gjlgté:ined from the symbol (2} of
D by replacing the jth columnyof D by the column of eonstants
ki) +++, ky. Hence, if ¥; ig\défined by

Ky G M G @i e
k2 | &))" -

2 5.1 Az 41 Qan

@ F=| 2N

L >
\ W

NE/

. "\x:\ :‘I‘:n n1 te O, 71 Up, a1 ttr Qan
then ()

N

TN D, = (1,

2\ DIt is o be noted that {18) and (21) arc obtained if 7 is 2 and 3
N/in (23). Now, for uniformity of notation, 5, is defined to be Dy.
Hence (23) is true if j =1, .-+ n.
Now, il equations (23) are used in (14), £ becomes

(24) IyD — o Ey + a1afle — aigEy 4+ - -+ (— 1)y, Jl,.

In (24} it is to be noted especially that the signs alternate, that
there are n +- 1 products, and that D, By, s, - -, R, are determi-
nants of order ». This suggests that (24) might be the expansion
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of a determinant of order n + 1, such that its first row is the
ordered set ki, a1, @iz, 013, * - *, 01, and that the minors of these
elements arc respectively the determinants D, Fy, Es, Ha, -, E,.
It will now be proved that this is indecd the case. Obviously the
svmbol

ki @1 @z @iz Ga
i a1 @z a3zt Gia
ks g2 @2 G2z O
N
O\
PR\
ka Q1 L5 &ng SRR 8 ¢ s.’:"‘\'
has &y, @1, @is, - -, Gig in its first row, and the ibvors of these
elements are D, By, Bo, -+, B 'The expansibn)of this symbol
by its first row is O

A
25) (=D D 4+ (—1) oy By AN
-+ (*1)1+3‘11?E2';|" cooe (=1 gy B

Now the first, second, third, -.w-:;;'la.st terms in (25) equal respec-
tively the first, second, thirgl,:'f *., last terms in (24). Thereforc
the number £ in (14) igs;indi-:cd the determinant whose symbol
gave (25) by expansiog.}Sincc two rows of this symbol are alike,
it follows that # is@érd; This completes the proof of (13).

In the same way it is proved that D/, Do/D, +++, Dn/D sat-
isfy cach of the(@gliations {1). This result and theorem 1 arc com-
bined in thegrem 2 and referred to as Cramer’s rule.

Tauddam 2. Let D, Dy, -+ -, Da be defined as in theorem 1. If
D 50y there is one and only one solution of the equaiions. This
soligtion 4s the ordered set of numbers D./D, Da/D, -+, Daf/D.

V :l‘}momm 3. Let D, Dy, -+, Do be defined as in theorem 1. If
D = 0 and if at least one of Dy, + -+, Da 15 not 2ero, then the equa-
tions are tnconsistent.

Proor. As in the first part of the proof of theorem 1, if there
is a solution of equations (1), (3} are true. Then, by the hyp oth-
esis that D = 0, it follows that Dh = 0, Dn=0. Th1_s eon”
tradicts the hypothesis that at least one of Dy, -+, Dynis not
zero. Therefore there is no solution of (1).
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Theorems 2 and 3 give no information about cquations (1) if
D=0and D, =0, -.., D, = 0. Examples show that if these
conditions hold then the equations may be consistent or they may
be inconsistent. This was illustrated at the end of chapter 5 i
n = 3. It will be proved later that a necessary and sufficient con-
dition that cquations (1) be consistent is that the rank of the
augmented matrix equal the runk of the coefficiont matrix,

N\
PROBLEMS <& t\
e\

Apply theorems 2 and 3 to the 1 ollowing systems of cquatiousls"}
1. —z 42y 4+ 10z 4 7o = —28, ,~.<\:‘.

2x4d y+2We— w= —37, '\\

324+ y— 5Bz + 2w = 11, \::‘}

x4 Ty + 3w = — 2. )
A

2 4% — z2—7Tw= 6, ¢*¢

3o+ y  tdw= 5 e

9+ 2y 4+ 2+ 6w =12, O\Y

—x+dy+2243w=5

NS
e

3wt v+ ow— t=.\fi:‘;‘
2u—~ v—3w+4+ =g
a2 4 2 — Tl ~1,
—3n + 6o 4 4y —"?@\= 1.

& w—2 + bk Y =
e v+,w—2£=—1,
du— v 43t = 1
7u—§v}-’éw+7i = 0

e I T
'{x“' + t43u= 5

“:\ 8=+ Tu= 17,

x..\"iz —p - 25 + 4u = 10,

\} B 20—754 ¢ — 2

= —23,

s— i+2u= 4

3 + 2= — U= —§
v + 05— 2u = -5

7. 2+2y— z4+4du+ 70
2r+ y + 3u + he
s4+2+ 24+ 2u+4 3

—Or 43y +32+2m—
br — y—2z2 4 y = —

I

I
|

T B0
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8. wH+ s+ t=2u— p=1,
Py — 3 — 1 + v =0
—3w 4+ 2z 20— v =2

i + 7t - uw— v=205
—Tw 4+ 63+ 2%+ 2u — 4y =5

9 w—2+3H+2ut = 1,

2w — it = v=-=1

w4 28 + ¢ + Jw= 0
dip — 8 4+ w— 20= b,

w—24+8 +3u+1dv= L N\

10, bz+ v+ 22— vwtde= —6 SO\

—Bz 4 dy — 92 — Tu 420 = 27, o\

— 4 43y + 52— 2ut 2= —5, W

—w 2y + 7+ 3u + 5 = 2i, "(“"&'

9x — 3y 4 4o — 4y = 7. "i'."

i\
2. Systems of g linear equations in n unknowms., Consider the
system P \\;
apyzL + apaxs 4o+ Gl= Fr
az@1 + Gggws 4o 1P0ER = ks,
(26) ' R\ '

&q1¥1 + a523;2“+ R kq:

\ .
of ¢ linear cquations, g”n}\z anknowns. The augmented matrz of
this system is the rebtangular array

Ofan @2 0 ain 1
W | a e oo dga Ko
::\.. 21 2
2\
(27) 9,
QO
~\J ag G vt Y K

\rfhe coefficient matriz of the system is the matrix of ¢ rows and
n columns obtained by deleting the last colurnn of (27). The
notations a.m. and c.m. will be used for these matrices. T‘h.e no-
tation (ag) is also used for the coefficient matrix. It is specifically
assumed that there are g equations in the set and that there are
n variables in the equations. Hence in each row of (a;;) there 15
ab least one non-zero element, and i each column of (a;;) there
is at least one non-zero element.
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Let s be a positive integer not larger than g and not larger than
n + 1. Let s rows and s columns of (27) be selected arbitrarily.
Then there are «* elements of (27) which appear at the intersec-
tions of the sclected rows with the selected columns. These &
clements form a square matrix of s rows and columns. The de-
terminant of this s-rowed square matrix is called an s-rowed minor
of the aam. (27). An srowed minor of the can. is obtained by
selecting only rows and columns of the e.m. Tt is to be noted
especially than an s-rowed minor of the em. is also an s-réve
minor of the a.m., and that, if s = 1, then the srowed mifgr is
merely an clement of the matrix. e\

It was noted that there are many clements of {ay)\ which are
different from zero. Hence there are many one-reived non-zero
minors of (a;;). The rank r of (ay) is, by definitiolr, the number
of rows in the largest non-zero minor of (a:daHence r = 1. If
cach of the two-rowed minors of (a;) is zeroy then the rank r of
{a;;) is one. But if there is at Teast one ‘éYowed non-zero minor
of (i), then 7 is greater than one. THewank r, of the am. is, by
definition, the number of rows in the lafgest non-zero minor of the
am. Since each minor of the c.u}.’jé also a minor of the a.m., the
largest non-zero minor of {a,;) d8¥lso & non-zero minor of (27). If
the largest non-zero minor of {27) is not a minor of (a;), then
fo > r. If the largest neieero minor of (27) ig a minor of (g;;)
then 7, = 7. Henece r{&E Yy,

It will be proved*ow that r, = 7 or r, = r + 1. This will be
done by proving t}j.ah, ir, = r+ 2 there is a contradiction. If
fo 27+ 2, ther, >7 -+ 1. Hencer, — 1 > r. Since 7 is the
number of sx0ws in the largest non-zero minor of (), each
(re — sowed minor of (ay) is zero. Tet M designate an arbi-
trary, Bud'ixed, one of the largest non-zero minors of (27)., There-
foro Mihas r, rows. Lot M be expanded by its last column, Ifach
mirﬁ:r in this expansion of M iz an (r, — 1}-rowed minor of (a:),

“apd it has already been proved that each (r, — 1}-rowed minor
of (4;) is zero. Thus the expansion of M by ils last eolumn
shows that M is a sum of terms cach of which is zero. Hence
M =10. This contradicts the hypothesis that M is a non-zero
minor of (27). The following theorem has been proved.

TrarorEM 4. If v is the rank of the coefficient matriz of the equa-
tions (26) and if v, s the rank of the augmented matriz, then rq = 7,
Orrg =71+ 1.



SYSTEMS OT ¢ LINEAR EQUATIONS 189

The determination of the values of r and 7, if ¢ 2 4 and
n -1 = 4, would involve evaluating at least one determinant of
order four or more. The intricate details of evaluating determi-
nants of large order, which would be involved if r and 7, were
evaluated as indieated in their definitions, are avoided by re-
peated application of the following lemmas 1 and 2. By thege
lemmas a sequence of mafrices can be obtained such that each
matrix in the sequence has the same rank that (27) has and the
rank of the last matrix in the scquence is determined very simplya\
Simultaneously a second sequence of matrices is obtained such
that each matrix in the sccond sequence hus the same rank ‘that
the c.m. of (26) has and the rank of the last matrix is d;:tieﬁnhled
simply. K N\

These lemmas will be used now to simplify the ‘determination
of » and », for the numerical equations %)

r—2y+ 2 - u:r“t);
o

92 — y — 22 4N\w'=0,

—x — Ay 4;;7«:41"— 5u =1,

8x —;?9'53—4z+ w = 0.

The angmented matnieg"‘}[o of these equations is
L™

NI 1 -2 1 -1 0

o7 2 -1 -2 1 of
:j\'ﬁ“ =11 -4 7 =51
O g —7 —4 10

If M3 designates the matrix which is obtained from Mg by adding
"'\'f(;)e;l,ﬂh element in the second column the product of 2 and the
N\ forresponding element in the third column, then

1 0 1 -1 0

' 2 -5 -2 1 of
Mi=y 4 10 v -5 1
g —15 —4 1 0

By lemma 1 the rank of My equals the rank qf M, Tater in
should be checked that this result is obtained if 4 =4, p =9
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g=2,{=3, k=2 in lemma {. I M, designates the matrix
which is obtained from M by adding to each element in the fourth
row the product of —1 and the corresponding clement in the soc-
ond row, then

1 0 1 —1 ]
—a —2 1 0
Ma=1_ 10 7 —5 1}
6 —10 —2 0 0
N\
By lemma 2 the rank of My equals the rank of M;. ILater this
statement should be checked. )

"It is to be noted especinlly that multiples of Lhe Ja;sf? column
must not be added to the other columns if it is dg:ﬂﬁ‘éd to obtain
the rank r as wcll as the rank r,. This is true berause the last
column of the am. is not a column of the g.M,Yor of any matrix
obtained from the c.m. by lemmas 1 and _3N"Multiples of other
columns may be added to the last columiy)y “Two or more column
transformations may be performed in sa}céssion without rewriting
the remaining columns if multiples ©bthe same column are used.
Also two or more row trunsformations may be performed simi-
larly. However, a row transfgrmation and a column transforma-
tion must not be pel'formegl"oiri succession without rewriting the
remaining clements. IfAd; and M, are defined by

NN
[\ 0 0

-1 0
o ~=\ 3 =5 -1 1 0
\'**’n —8 10 2 -5 i}’
O (J— -2
& 0 0 0
A (0 0 ¢ -1 0
O L B S
AN 0 0 0 -5 1{
6 —10 —2 0 0

then it is true that the rank of M5 equals the rank of My, by lemma
1, and that the rank of M3 equals the rank of 3, by lemma 2.
Now, by inspection, there are many two-rowed non-zero minoers
in My, and some of them are in the c.m. In the first four eolumns
of M4 each three-rawed minor is zero, but in the upper right-hand
corner of M, there is a three-rowed non-zero minor. Hence r = 2,
and r, = 3.
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Lemua 1. Let € be a matriz having q rows and p columns and
symbol (ci7). Let s and { be dnfegers such that 1 £ sZ p and
1=t =0p bui s =1 Ltk be an arbitrary, fived number. Let the
matriz B be formed from the molriz C' as follows: if § 5 s, then the
Jth column of B is precisely the jth column of C; the element in the
ith row of the sth column of B is ¢ + ke G =1, -+, ). Then
the rank v’ of B equals the rank r of C.

Proor. It will be proved that ¥ < . Also it will be proved tha’s\
# = r. Then it will follow that v = 7.

The first part of the proof that v £ r is the proof that, if £ 351
< pandr 4 1 £ g, then each (r + 1)-rowed minor of Bighzéro.
Tet M be an (r 4 1)-rowed minor of B. Therc are liree cases:
(i} the sth column of B doeg not occur amoeng t-he’cp]:umhs of M;
(ii} the sth and ¢th columns of B both occur ame‘fxﬁ the columns
of M ; (i) the sth column of B occurs among\the columns of M,
but the fth column of B does not oceur ameng’ the columns of M.
The proof thut M = 0 will be made fof\these three cases sepa-
rately. If M satisfies condition (i), then/M itself is a minor of G,
by the method of forming B from." Also M iz (r 4 1)-towed,
and by the definition of r all (n41)-rowed minors of € are zero.
Hence M is zero. It M satis'ﬁes condition (ii), then there is an
(r + 1)-rowed minor N ofC, from which M is obtained by adding
to each element of the gt column the product of k and the corre-
sponding element of Qﬁetith column. Since M and N are determi-
nants {not matries); it follows by theorem 13 of chapter 6 that
M = N. BubdVN$ zero, since it is an (r ++ L)-rowed minor of ¢
and sinee ‘e:;ank of (" is #. Hence M is zero. Vinally, it M
satisfies gendition (iii}, it will he proved that there are two deter-
minanteA7;, and My, such that M = M, + kM> and M1 =0,
My &9. By definition, My is obtained from M by replacing the

”gle'liiénts ¢es + Feg of the sth column of M respectively by c:; Mz
<3 obtained from M by replacing the elements os + key of the sth
column of M respectively by eq. Now My is an (r + 1)-rowed
minor of ¢, and therefore My = 0. Also M is, exeept perhaps
for sign, an (r + 1)-rowed minor of C, and therefore Ms = 0.
Also M = M, + kM, This completes the proof that each
{r -+ 1)-rowed minor of B is zero. _

The second part of the proof that v’ < r is the proof that, if
r+2<pandr+ 2 =g, then esch minor of B which has more
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than r + 1 rows is zero. Let M be an (r 4+ 2)-rowed minor of B.
Expansion of M by its first column shows that M is a sum of
terms each of which has an (v + 1)-rowed minor of B as a factor.
By the preceding part of this proof each of these (r 4 1)-rowed
minors i3 zero. Therefore M is zero. This process can be con-
tinued until it has been proved that each minor of B which has
more than » + 1 rows ig zero.

The first and seeond parts of the preceding proof together com-

plete the proof of the fact that +* = r, because in these partg™it
has been proved that a minor of B which has more than r rows'is
zero. R\,
It will be proved next that r = #'. Two auxiliary ;ﬁa%rices o
and By arc vsed. By definition €y is the matrix B g@nd By is the
matrix (¢, Thercfore the rank ry of Cp is procis v]}{’ﬁhﬂ rank v of
B, and the rank 7y’ of By is preeisely the rank r(b” . Itis to be
noted cspecially that By is formed from €y byzadding to each ele-
ment of the sth column of €y the produétsst —% and the corre-
sponding element of the ith column ef*Cy. The argument which
has been applied to B and €, and whieh has led to #’ £ 7, can be
applied to By and Cy. The conglusion is that ry’ = 7. Also it
has already been noted that ro %5\7" and #y’ = . Therefore r < r’.
This eompletes the proof of femma 1.

Lemma 2. Ifa mairj:{’E s oblained from a matric C by operating
on rows, in the same wanner as in lemma 1 the malriz B was ob-
tained from the matmz C' by operating on colummns, then the rank of
B equals the rank.of C.

NS

Proor. .,33 hypothesis, the sth row of E is ohtained from C by
adding to\énch element of the sth row of ' the product of k and
the [;g)l‘n\(eél}(mndillg clement of the #th row of (', and each other row
of Bs'precisely the corresponding row of ¢, Let B be the matrix
dbtained from E by interchanging rows and columns of , and let
S be the matrix obtained from ¢ by interchanging rows and
columns of €. Then, by lemma 1 applied to E' and ¢/, it is true
that the rank of B cquals the rank of €7, Alzo a minor in £ is
zero if and only if its corresponding minor in B is zero. The same
statemoent is true of €' and ', Ilence the rank of F equals the
rank of E', and the rank of €' equals the rank of €’. Therefore
the rank of E equals the rank of €. This completes proof of

lemma 2.
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PROBLEMS

Find r and #, for each of the following systems of cquations.

1, 4Ty +224 u= 1,
—x - y+ z— 4du
2r + 2y — 22 Ou
dr — 2y — Tz + 10u =

I
-
—- o

2 5z -+ 2%~ 24+ u= 1 74
r—dy Tz — 4w =
20— ¥+ z2— u
O + y+ 42— w=

1

|
L

7/

[

i

® =
Ve
Ca

3. »+ 28— {4+ Bu=—
29 + 11s — 7t 4 26w =

1

1
do— s 42— w= 3 N
h + 38 + ou= 1 \\’\’>

4, —2 4 5 — Ti— u
—8y 4 13s — 23 — Su
34+ 324+ 13+ u
v— Hs 4+ E4+ u

fi

I
st

5. z— y+de+2-= m‘«
11z — Sy + z— 0 =",
o+ by + 24 N2
22 4 19y — 22 8= —1,
2 + 3y — %\’;\%=

N\

6. Hr+ ¥ rz‘(‘z)—l— 2% =
14z + 202z + 241
12z — f’,}[“— 3z — Bt

3n &) Oy - ¢
,’{3\ w4+ z+ T

A\

N oz— g4t uwd W= L

<> —he — 2y + 21w+ 120 = 3,

—z 4+ ¥ + Tud 2=-L
Je+dy + z 4+ 3u
x4+ yp— 24+ S+ S0

[
|
b ==

I
J

1

[l
gL

8 22— y+3— ut v=
2y + 2+ 2u + 4
—dx + 5y — 2z - du
—~z -+ 4y -+ Az — 2
z—3y — 21+ »

Il

]
8 e kD

I
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9. 29+ s+ B+ — w= 1,
—4y — ds 4 Bt 4100 — Bw = 2,
8y + 5s 4+ 13t + 100 — 2w = 1,
By +6s4+ 2t — 6o43w= 0,
By + 45 - v+2uw=—1,
—y— s+ U+ Tv—2w= 0.
10. 3y — s — B+ ow )
—4+ s—2t4 v ;

29 —4s — 2 — 12 4 w

[ |
DO DB e

2y 2+ {4 B— w N
y—hs + 2 — B , A\ ¢
Sy 4+ s — ¢ + 2w '\'\

There are two ways in whieh the proofs of tlm fuﬁﬂamental
theorems 5 and 6 will be simplified. ‘These ways \u,ﬂ h% illustrated
by means of the system of cquations oV

Te —~ 2y + 59z + 1lu 4+ 15 70,

o ./

22+ y+ 9%+ 31:,—\'3
x+6y-23z+ u*—27v=-22,

(28)

z+ 2y — Sz + — To = =6,
30 — ¥y + 2ﬁz~—|— du 4 10w = 22,
3xr — 43{\?& 41z + Bu -+ 21lv = 46,

The a.m. of equat)q‘ns (28) is
BV-2 5 1 15 70
Q2 1 9 3 -3 12
‘o1 6 —23 1 —27 —22

N\V .

R R T
A\ 3 -1 26 4 w22
N 3 —4 41 5 21 48

\ By leromas 1 and 2 it is found that » = 3 and 1, = 3. The last

step in this process indicates that the coefficients of y, 2, » in the
seeond, fourth, and fifth equations in (28) form a non-zero third
order minor of the c.m. of (28). This minor will be designated
by M. Hence M is
1 9 3
(30) _ 2 -3 1
—1 26 4
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Now, if the cquations are rearranged as in
224+ y+ 924+ Ju— 3v= 12

242~ 32+ uw-— To= —6
(31) 3z — y+ 2024 4w+ 10v= 22
Jx — 2y + 5% + 1lu -+ 150 = 70,
xz+ 6y —282+ wu— 27 = —22
3c —dy + 4124+ bu+2lv = 46,
then A appears in the first three rows of the a.m. KON
2 1 9 3 -3 127 O
1 2 -3 1 —7 -6 ‘
3 -1 26 4 10 224
7 -2 59 11 15 70
1 6 —23 1 —27 \722
3 -4 4] 5 2177 46

A set of numberz which constitute mqolutlon of (28) is a set of
numbers which eonstitute a solutiom of(31). Converscly, a solu-
tion of (31) is a solution of (283 Thercfore (31) and {28) arc
equivalent, This illustrates tha ‘wencral fact that, if the equations
in A system arc rearranged M any desired order, then the new
system is equivalent to fhe original system. It is also true that
the ranks of the mag‘&ﬁeﬁt matrices of the two systems are equal
and that the mnlm he augmented matrices of the two gystems

are equal,
The second(3 vmv in which proofs will be simplificd will be illus-

trated I].(..Xt;\_[f the variables in (31) are renamed by W riting
(32) '\)L—y, Y=z Z=u U=z V=29
th(""l (31) hecome '
O X+ 9V 4 3Z42W-— 3V= 12

90X — 3V + Z+ U- V= -6

—~X 4+ 92Y + 4Z + 30+ 10V = 22,
—9X -+ 507 + 11Z +7U + 15V = 70,

68X —WY 4+ Z+ U -2V = -2
—4X 4+ 417 + 5% 4+ 3L + 21V = 46.

(33)
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Tt 1s especially to be noted that (32) can be regarded as a reorder-
ing of the variables in (31) which resulfs in the system (33). "The
a.m. of {33) is

1 9 8§ 2 -3 12
2 -3 1 1 -7 -8
_ ~1 2% 4 3 10 22
(34) ~2 59 11 7 15 70
6 —23 1 1 —27 —92
-4 4 5 3 21 46 N\

In this matrix M appears in the upper left-hand corner. ,Naiy, by
- {32), a solution of (31), after being reordercd, is a solutioh of (33),
and a sclution of (33), after being reorderad, js a Huluhon of (31).
Hence (31) and (33) are equivalent. This ]HLlstl‘}LfeS‘ the general
fact that, if the variables in a system of equajmmq are reordered
in any desmd way, then the new systemNp equivalent to the
original system, It is also frue that thestinks of the cocfficient
matrices of the two systems are equal\:»md thut the ranks of the
augmented matrices of the two sy stt,lnfa are equal,

TaEORKM 5. If the rank of the,augmmied matriz of a set of linear
equations 18 not equal fo the nmk of the cogfficient malriz of the equa-
tions, then the equations ar e‘mwmzsient

Proor. It will be prow ed that, if there is a solution, then therc
iz a contradiction. {@t\r be the rank of ihe c.mn. of the equations.
By theorem 4 an@l $he hypothesis that the rank of the a.m. is not
equal to the mnk of the c.m., there is an (r -+ 1)-rowed non-zero
minor in the @m. This miner will be designated by 4. Now the
elements e{ﬁ row of M form an ordered sub-sct of the elements
of a upighe row of the am. It will be said that the row of M
detemgmes this row of the s.m. and the corresponding equation
insthe system. Again, the cloments of & column of M form an

~ (ﬁ'dered sub-set of the clements of a unique eolumn of the a.m.
Y, 'Fhe column of M is said to determine this column of the a.m. By
its definition M is non-zero and has 7 + 1 eolumns. Also the largest
non-zero minor of the e, m. has r eolumns. Hence the last eolumn
of M determines the last column of the a.m. Ilach other column
of M defermines a variable in the system, Thus M determines

r -+ 1 equations and ¢ variables,

Now the original equations can be rearranged so that the cqua-
tions determined by M, their relative positions proserved, are the
first » + 1 equations in the rearranged set. Then the variables
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in the equations of this rearranged set can be reordered so that
the first 7 columns determined by A, their relative positions pre-
served, are in the upper left-hand corner of the a.m. of the final
set of equations. The last eolurnn of M Is precisely the first r +- 1
elements of the last column of the a.m. of the final set of equations.

The rearranged cquations are given the notation (26). Hence
M is non-zero and has the symbol

@11 A1y ky
21 oy kg &\
. a
¢\
o\ ke
& N
Ly Ly ke " s'“:‘.
Gry1,1 Cprr Ko | O

. AN\ .
Also, 7y, + -+, =, satisly (26) because the origiba} equations have
4 solution by hypothesis and the variableég WY -, &y, are merely
the original variables reordered. Ther(:@r\é\i{ has the symbol

11 -y (ari@y Aotz oot Q1B
@31 - gy {2171 ,x‘F‘ffzzxz + -4 Gania)
@) |- AN
Ar s By N2 + dyaity i ﬁrn-’"-'-u)
Gry1,0 """ aﬂ'{t\r} (@ry1,121 + Grgatz +oo0F @y y1 nEn)
Now, by theorck }‘2 of chapter 6, the determinant (35) equals
the sum O
| AN
11 N a1y a11%1
$
ey NV @211
N\
A .
R\
'..3::;
Nt/
! ry 1L
Ar41.1 rs1,r Gy 43,1%1
ayy a1y (grpxy -+ -+ O1n%n)
a1 Tar {Gporg +-o Aonin)
+
71 Oy (ar2x2 4+ F arraxn)
Q41,1 Qypl.r (ar+1.2x2 4t ar-}—l.nxn)
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The second determinant can also be written as o sum.  Repetition
of this process shows that (35) is a sum of n determinants. The
factor 2 is in the last column of the first of these n determinants;
the factor @2 is in the last eolumn of the second of these n deter-
minants; ---; the factor x, is in the last column of the last of
these 7 determinants.  Thus, if

ay) R 3 93 a1
Qay e 25T dny o
(36) M; = - : : (G =1, ),
)
e Tt Crr Qg ; AN
S )
Tra11 te Cri1,r Fry1.,5 |

‘0
then M = M) + Mozy +- -+ M2, \

It will be proved next that My =0, -- N, =0, If 7 >»
then, by (36), M; is an (r 4+ 1)-rowed mmm of the c.m. of {26).
But the largest non-zere minor of th(,\c m. hus » rows. Hence
M;=0ifj>r. Again, if§ < r thon, by (36), M; has two col-
umns alike, and hence M; = 0, Sm('e M 18 a sum of n terms each
of which is zero, M = 0. Thig mntmdwts the hypothesis that 3
Is a non-zero minor of the am

im\ PROBLEMS

1. Apply theorem$ ‘(o those gystems of cquations in the set of prohlems
on page 193 to whmh is applicable. Tdo the same for theorem 2. Why is
neither theorem 5 nor theotem 2 upplicable to the remaining problems in the
set? " \

2. Bhow¢ tha:t theotem 3 of chapter 5 is a special ease of theorem 5 and
that th&lﬁ.‘t and theorem 2 of chapter 5 constitute 4 speeial cuse of theorem 2,

f\pphr\t corem 5 to those of the following systems of cquations to which
it 1<, a:pphcablr'

m\: ...3. :r,—|—2_; -z + To = 1,
\/ ~o+ 3 tetdu— o= 0
o+ y —2u = —1,

.

—2y4+z— u+t 3

=2 — 4y —z — 3u + L1y
4 243y —2— u+2= ¢4,
Sz 4 6y — u4Tv= 10,
2 4+ y + 42 430 = 1,
—a‘:+2y— 242u— r= 0
— ¥+ z2—3u+ v=—1.

I
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5. x-+ by — 4dz42u— 1=

3y+ z— u+ To=

—z+4 By — 11z +2u — 10 = —3,
—z — 12y + d2 — 3u+ 15 =

dr — y+ 4+ uw— = 1,

x4+ yt 5 + 2=-1

6. 4n- Ty 442 — 6u — 6o = —10,
Zp — —dy+ v= —3
r — 24+ 2u— v= -2
—z 34y — 3z + by = 7,
-2+ z2—2u—20~= 0 O
dr — oy + 22 — 2u — By = —12. '\~\.
7. 50+ 2% — 24+ uw+bv= 0 N K
Bz — 3y — bz — Bu + 50 = —1, Qg\"'
Jz — 5y — 32— 13u+ 20 = 4 RO
-+ ¢+ 22 — = 2 O
Sz 49y 4+ z415u+8 = —4 %)

dy + 2z 4+ Tu+ p = —1
8. r+ y+or— u = 1, K7\
=28 — dy +out o= =B AN
dp — 6y — 3z — u+ 2= 2_,‘:‘.’

U — 12y FT2— utd= ,‘.0!"'
iTr+ By+92 —8ut @ -—::.:—:-"i,
T — y+2 —3u+ vffv 4.

The system (28) of eqd&ﬁons will now be solved by methods
which will illustrate ali(the ideas and notations in the proof_ of the
general theorem ‘,I\J‘JQ?t,a’if the rank of the augmented matrix of. a
sel of lincar equatlons equals the rank of the eoefficient matrix,
then there is ap Jeast one solution of the equations. 1t has already
-dfjsh'at the system (28} is equivalent to the system (33).

been pr(_)\g(,\ ) ‘
The fild three equations of the system (33) will now be solved, by

C?“a-?n@\'s;rule, for X, Y, Z tn terms of Uand V. First these three
egtizﬁions are written in the form

~O X oy +3Z= 12-2U+ 3V,
(37) of — 3Y+ Z=—6— o+ 7V,

_X 4 267 + 4% = 22 —3U —10V.

If the nofation
K= 12— 2y 4+ 3V,

(38) K,= -6— U+ 7V,
K, = 22 -3U~- 10V,

L
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is used then (37) become
X+ 9Y +3Z = K,
B39 2X — 8V + Z = K,
—X +26Y + 4% = K.

Now let D¢ designate the determinant

K g 3 O\
(40) K. -3 1 A
Ky 26 4 ,.\’ N

Hence, by Cramer’s rule and (30), X = D,/M. %;m‘larly if Dy
and Dy are defined by ~

, 7

\\

1 K, 3 1009 K
(—1-1;1 Dg = 2 K2 I 3 DJ = % \ —3 K2
-1 K; 4 21T 26 K

then ¥ = Do/M and 7 = Dy/M. ]'}‘{pftnsmn of Dy hy its first
column shows that D, = —381&; —{—” 12IL2 + 184{3. Henece, by
(38),

{42) D »‘%12 — 2007,

R <

In the same way it is pr\"\ed that
\&3 = —40 - 40U — 287,

{43) \
) f.,,.’Dg = 336 + 1312V,
By 30), 2 28 Therefore the solution of the first three Uf
tquatmns«( ) for X, ¥, Z in terms of U and V is
\\ = (—312 — 201 )/28,
(4 Y = ( —40 — 40U — 287)/28,
\;s.
\ Z={( 336 -+ 112V) /98,

It will now be proved that the expressions (44), which have been
obtained from the first three equations in the system (88}, satisfy the
rlﬂmammq equations in system (38). Fractions are avoided if (334)
is multiplied by 28 before the cxpressions {44) are used. Thus,
(334) is equivalent to

(45) —2-28X + 59-28Y 4 11-287 + 1960 + 420F7 = 1960.
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Therefore (44) satisfy (33,) if and only if
(46) —2(—312 — 200) + 59(—40 — 4U — 287)
4+ 11(336 < 112V) + 196U 4 420V = 1960

In this expression the coefficient of U is zero. Also the coefficient
of V is zero. Henee (44) satisfy (334) if and only if

{47) —2(—312) + 59(—40) + 11-336 = 1960.

Now (47} is true regardless of the values of U and ¥ in (400N
Therefore for all values of U and V (44) sabisly (334). This I
the meaning of the statement that (44) satisfy (384) *idengf.ic\aﬂy\m
{/ and V. Similarly it is proved that the expressions (4. satisfy

7%

(335) and (335) identieally in U and V. N

z { ?
PROBIEMS s

In the two preceding lists of problems solve the systems of equations which
have r = 7, by the method of the preeeding illué:'tsa?;ion. In each problem
verily that the expressions obtained satisfy t]%e'}x't.hér cquations in the system
identically in the transposed variables. N

Another method of showing that'the expressions (44) sati‘sﬁ_f the
remaining equations in (33) willhow be explained because 1t 11‘1115-
trates the method used in~ife general proofs. If the functions
S5 f2, fs, J4 are defmed@

h= &Y oev+ 3z42U-— 3V-—12

fz = (28X — 3V + Z+4+ U—- TV -+ 6

LY X 436y 4 4Z 430 +10V - 22,

;\&\: —9X + 50¥ + 11Z + 70 + 18V = 70,
thenthe first four of equations (33) become f1_=_ 8, =0/
,‘—T\'b;;f4 =0, Also, if the first function is multiplied by 3, the

“second by —2, and the third by 1, and if these results are added,

N\ it is found that the fourth function is obtained. Therefore
(49) fo=3fi — 2+ s
By (49) values of X, ¥, Z, U, V which make each of the f}metions
F1, fo, and f5 zero are values which also make f3 ZET0. This means
that & solution of f1 =0, fs =0, fz =013 a solution of fy =._0-
Hence the general solution (44) of (33y), (332), and (33g) satis-
fies (33,).

(48)
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In the same way it is proved that the cxpressions (44) salisty
(335) and (33,). Thus, if f5 and fs designate the lunctions 86X
~28Y +Z 4+ U — 27V + 22 and —4X +41Y + 52 30U+
21V — 46 respectively, then _

(50) Fs=fi+26 -7, and Jo=f1 = 2fy + fu.

This method of proving that the general solution {(44) of the first
three equations in (33) satisfies the remaiing equations in (33)
is called the method of linear dependence.  This is done bocagise
the existence of an identity such as (19} 18 preciscly the meaning
of the statement that f; 4s @ lnear combination of [y, fof it T
[t 15 also said that the equation (334) is linearly dependsnt on the
three equations (33,), (83), (333). In the same wad™G0,) shows
that (33;) is linearly dependent on (331), (335), '(%33); and (50,)
shows that (33g) is lincarly dependent on (3393332}, (33,).

In the preceding procf {19} was verifieds However, verifica-
tion does not illustrate the ideas and notations in the proofl of the
gencral thearem. A proof of (49) whic}r:ﬂlﬁstrates these ideag will
be given now. TLet T designate thg“fourth-order deterniinant
formed from (48) by the coefficients of X, ¥, Z and the column
of constants., Then N\

N

1 Y

N 3 —ig
2 -3 1 f

51 T =1 4
(51) S 280 40 _og
p '\..‘-2 89 11 —70

By (30) the minfh of the —70 in the lower right-hand corner of
T is M. Lejs.ll’fj," My, My designate the minors of the other ele-
ments in tl{e;ki-st- colunm of (51). Tt will ho proved by a general
method tHa¥

638 M~ Mapy Mgy - ary, =0

...\I(}"é}éver, before this ig done, it will be verifiasd that (52} implies
N{29). By the definitions

2 —3 1 1 9 3
(53) M, =| —1 25 41, My=| —1 26 41,
-2 a9 11 -2 55 11
1 9 3
My=| 2 -3 1

—2 2% 11
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Therefore
(51 My =84, My =356 M;=28 M=28%

If these values are used in (52) and the result is divided by 28, the
identity (49) is obtained.

It will be proved now that (52) is true. The left-hand side of
(32) suggests that (48;) be multiplied by M, (48;) by — s,
{48:) by My, (484) by —M, and the results added. The function
go obtained will not he displayed because of its length. In it thh
coeflicients of X, ¥, Z, U, V are

(55) Myl — Ma2 4+ My(—1) — M(—2), &2
(56) M9 — My(—3) + My-26 — M-50, o~ N\
(57) M3 = Myl Mpd — M0

(58) M2 — Myl + Mg3 — MO

(59) Mi(=3) — Mo(—7) + My 1007 115,
respectively.  The constant term is ), \

(60) My(~12) — My:6 + @1‘5(“’—22) — M(—70).

Therefore, (52) 18 true if angiﬁﬁniy if each of the numbers (55},
(66, (57), (58), (59), (60} isiindreed zero.

To prove that the number (60) is zero the expansion of (51) by
its last coluran is usedj:} Thus
(6) T = —(12)M, + 61z — (=22)Ms + (—TO)M.
On the other §iand, if the last column of 1 is multiplied by —1,
the 1'csultzin:g~determi.nant is —T. Also this determinant is obvi-
viously g\fdur-rowed minor of (34). Since 7, = 3, it follows that
—T &0, Hence T' = 0, and (61) becomes

@) 0= —(—12)M, + 6My — (—22)M;5 + (=TO)M,

\\*s\"“fultiplication of (62) by —1 shows that the number (60) is zero.
To prove that the number (59) is zero let T's designate the
determinant formed by replacing the last column of T by the
coefficients of the fifth variable V" in (48). Then
1 9 3 -3
2 -3 1 =7
-1 26 4 10
—2 5 11 15

Ty =
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Expangion of Ty by its last column gives

Ty = —(—3)My +{(—-7)M; — M3-10 + M-15.
Also, T5 = 0, since 7% is & four-rowed minor of (34). Hence
(63) 0= —(—3)M + (-T)M; — M 10 + M- 15,

Multiplication of (63) by —1 shows that (59) is zero. A similar
proof shows that (58) is zero.

"T'o prove that (57) is zero let Ty designate the determinant aPs
tained by replacing the last colummn of (51) by the coefficicrts of
Z m (48). Then R\,

1 9 3 3
A 1 1

o=l 1 26 1 4 'o\g
2 59 11 11O

Now expansion ol T3 by its last column g}V{%&

Ty = —3M, + My — 4My 7 11M.
Also T3 = 0, since it hag two coiumﬁsz alike. Hence
(64) 0= —3M, + My 435 + 1101,

Multiplication of {64) by ﬁlj'sﬁoxx's that (57) is zero. A similar
proof shows that (55) and(56) are zero, This completes the proof
of (52). o)
The general rule i5%hat the first r rows of a determinant of order
7 + 1 are formedMrom the columns of M and the column of con-
stants in the ¢duations from which the solution was obtained, and
that the lagt\edw consists of the corresponding coefficients in the
equationgviose dependence is being exhibited. The coefficients in
the linear dependence are then the signed minors of the clements
of the last column of this (r 4+ 1)-rowed determinant. For ex-
,a\fﬁ“blé, the coeflicients in (50,) are obtained by applying the pre-
Needing method to the first, second, third, and fifth of equations
(33), and the coefficients in (50,) from the first, seeond, third, and
sixth of equations (33).

IPROBLEMS

1. By the methods just illustrated find the linear dependence which was
exhibited in (61) of chapter 5.

2. Do the same for cach of the remnaining equations in esch problem on
puge 201,
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It will now be proved in general that, if the rank of the aug-
mented matrix of a set of linear equations equals the rank of the
coefficient. matrix of the set, then there is at least one =olution of
the cquations. Let r be the rank of the e.m. of the equations.
Then there is an r-rowed non-zero minor of the c.m. 'This mnor
will be designated by M. Now M determines r cquations and »
variables. Lot the cquations be rearranged and the variables be
rcordered so that the rows and columns of M form the upper left-
hand eorner of the c.m, of the new set. Let thom have the notas
tion (26). Then M is non-zero and has the symbol N
a11 e 21y { \“.\

(65) - . Y
. »“\ 4

G P Qyr

Now, if r < r, then the firat » equations ixn{{\%) can be written
ay®y oo+, = k) — (ﬁl,r,yj,\ﬁr:q T+ arata),

5"

(©66) - . R

%1 et ey =:fjé'; - (af,i'-f—].x‘f—j--l + -+ Grua).
It will be convenient ton“se the notation

(67) k"s = ;{?3‘ - (‘&{Qlf"lxr-i—l +- + a-&'raxn) (@ = ]‘? R < ﬂ).
Henee, if r < ngthe first r of cquations (26) become

N anzy e me = B
O\n' .

~\
@ &0

™
&

AN apxy + 0t Gty = Ky
\M\‘fg avoid treating the cases r < nand r =9 separately the nota-
tion
(69) By=Fk (=11
will be used if r = n. Hence, if r = n, the [irst r equations in

(26) can also be written as (68). _ .
The determinant of the cocfficients of the r variables In the r
equations (68) is M, Also M is non-zero. Hence (68) can be
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solved by Cramer’s rule. Iere v, M, &'y, ---, &', replace n, D,
by, + -, fon of theorem 2. Let Dy be the determinant

e e -0 o1y
(70)

k!r 72 e ey

Then z, = Dy /M. Now, if r = n, it is true by (69) that Dy hore,
is preciscly D) of theorem 2. Therefore each x; has the yalb
given by theorem 2. Next, let 7 < . The expansion of (f{))\by

minors of ils first eolumn gives . O
71) Dy = D (=D Ay, .\'2‘; '
i=1

Henee by (67)
AY;

i
(12) Dy = Z( D Al — (@ gt +- -+ Gnza)]

N/

The coefficient of 2,45 in (72) 15
73 —[(=D" 41101 41 + SV U1z, 41
~ e + + ( l)r_HArlar 1'-|-1]

Let this number be desllﬁated by b1,,41. In gemﬂ ul, let by; desig-
nate the coefficient bf\srj m{7ifj=r+1, --,n Aloletby
designute the mnat{mt in 73, Then (72) become-;

(74) D1 =bgo+bh F1Frg brnta.

Thercloré )

(75)~.‘?mK ap = oy Dy ey
AN Cw T T Mt

77 \ w4

\I’z is to be noted especially that, if » < n, then the solution by
Cramer’s rule determines #; as a unique linear function {75) of the
transposed variables 2,4, - -+, #,. This function is a lincar homo-
geneous function of x4, -+, #, if and only if the constant term

b1,0/ M is zero,
In the same way it is proved that, if D; is obtained from M by
replacing the jth column of M by &'y, -- -, &'y, then «; = D;/M.
Txpansgion of I; by minors of its jth column shows that z; is a
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unique linear function of the transposed variables .14, -- -, Zn.
This funcilion is & linear homogeneous funetion of these variahles
if and only if its comstant term is zero.

If values ¢, - - -, Cn ave assigned respectively t0 %1, =+ Zn,
then by (75) a unique value, called ¢, is determined for ;.
Similarly there is determined a unique value for z; (F = 1, --+, ).
Thus a numerical golution of the first 7 equations of (26) is ob-
tained by assigning arbitrary values to the transposed variables.

PROBLEMS O\
{ N

From the results obtained for the problems on page 201 obtém three

numerical solutions for each system. "\

N
< 3

1t will now be proved that the expressions for 2,4 & v, z.1n terms
ol @,11, -, ¥n, which have been obtained from the first r equa-
tions, satisfy cach of the remaining equat-io;@identimlly m x4,

-+, Tn. This means that each set of vi—aﬂhes, which consists of
values assigned t0 Zyyq, * -, Tn andsfhe) values of 21, -+, 2 ob-
tained from them, satisfies the remaming equations. If r =g,
there are no remaining equationsS VI 7 < g, let s be an arbitrary
integer such that r < s = ¢.¢ It will be proved that Di/M, ---.

+ M satisly the sth equ“at‘idﬁ for all values of Zry1, ** 7y Tne

1f the functions fy, O ¥, arve defined by
(76) fi = aﬂx\’%" . + Centtn — K (g=1,., Q)!
then cquations (28) can be written in the form fi = 0, -+, fe=0
Let T desighaie/ the {r + 1)-rowed doterminant formed from the
firat and.jtiie'sth of these equations by the coefficients of z1, -+ -,
T, a.nq\tﬁb‘éonstant terms. Thus

2 j a11 LI 5 P —k
NATD T = .
g o e —hs

aqn -0 G ke

Then M is the minor of the element —¥k; in the.: Jower right-hand
corner of T. Let My, -+, M, designate the minors of ~ky =+
—k» respectively. [t will be proved that

(78) Mf, = (-1 M + (—1)"EMafe +- (— 1M
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It will follow then that any values of xy, - -+, x, which make each
of the functions fi, ---, f. zero also make Mf, zcro, and hence
make f; zero. That is, the expressions for @y, -+, &, which, by

the manner of their derivation, satisfy the first » of cquations (26)
for all values of #ryq, ---, ., will also satisfy the sth equation
in (26) for all values of 2,1, +- -, Zn.

Now (78) 18 equivalent to

(—l)r-l--ljlff]fl + (_1)r+2ﬂ:{2f2 ... ~
-+ (—l)T_F_rﬂ‘frf,. =+ (_1)r+r+}ﬂyﬁs =0

and hencc to \\ .

@D (DM () My e O

+ (=D PLf = DS, = 0,
The left-hand side of this equation suggeg{awthat the first equation
in (76} be multiplied by (—1) ’+2ilf'1_{ @e second by (—1)"M,,
<+, the rth by (—1)* 1M, the sthby (—1)2 23, and the re-
sults added. In the final equa.t-ip{l’ti:ic coefficient of z; is precisely
(80) (—1)"*2Mya; +- - R 1>,y
N (DT May (=1, ),
The constant term isﬂQ
8D (U RUIR) 4o (= DF (=)
o~ + (1P HIM (— k).

2O

Tt willfigw be proved that for each value of 7 the number (80) is

zero,‘afd that the number (81) is zevo. This will prove (79). The
expg'rﬁlon of (77) hy its last column gives

B2 (—)" )M, 4
+ (=) R ML - (— P e = T

On the other hand, if the last column of 7 is multiplied by —1,
the resulting determinant is an (r 4 1)-rowed minor of the a.m.
of (26). Hence —T = 0. IHenee T = 0, and (82} hecomes

(83) (—1)™*2My(—ks) +---
+ (__1)2r+1ﬂf,-(-—-kr) + (_1)21—4—234-(_;0&) = 0.
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This proves that the number (81) is zero. To prove that for each
value of j the number (80) is zero 77 is defined as the determinant
obtained by replacing the last column of 7' by the coefficients of
2. I j = r, then Tj is zero because it has two columns alike. If
r < j Z£mn, then T; is an (r 4 1)-rowed minor of the em. and
heneo is zero, On the other hand, the expansion of 1% by its last
column gives

(_ 1)1—|—r l'laljﬂ'-{l NN NS (_ 1)T+r+]'(1¢jl1ff ~
+ (_1)r+l+r+lastM' ?sf\}.

Therefore ¢ \ -

(84) (—1)f+2ﬂf161j NP (—1)2r+111£f¢-‘.1,-5 (”’}" .

(LM =0 GE 1, ).

"This proves that for each value of j the number (Sf)) iz zero. The
proof that (79) is true has been completedOy™ _
These facts and theorem b complet{z;’ﬁhe‘proof of the following

fundamental theorem 6.

Trurorkm 6. A system of q, {ji;iéizr equations in n variables is
conststent if and only 4f the mn{k‘r&f the augmented malrix of the equa-
tons equals the rank v of the ’céeﬁicﬁmt matriz of the equations. If
these ranks are equal, theNhere is a subsei of v equations and a sub-
set of v variables suchdhal the equalions in the subset can be solved for
these v narigbles. \The solution cxpresses each of these T pariables as
o unique lincapyhwiiction of the remaiming ° — 7 t)am’ahles: These
expressions s@lisly the r equalions from which they were obiame@, and
a identically in these n — 7T varinbles.
ssigning an arbitrary vulue to

All salutions of the q equa-

the remafnityy ¢ — r equalions,
A numeriend solution is obtained by a
' . + - .
each ef the remaining n — 7 variables,
IS are obtuined in this monner.

Y Tt is to be noted that condition (58) of chapter 5 is the conditiop
r<m, rg <n, since n = 3. For the system (60) of chapter 5 it
was proved that r = 2, #, = 2. Hence the solption of these equa-
tions in chapter 5 illustrates theorem 6. For the system (G7) (?f
chapter & it was proved that v =1, 7a = 2, The fact that this
system has no solution illustrates theorem 6. .

Other methods of proving the theorems in this
found in the references.

chapter will be
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PROBLEMS

Diseuss completely each of the following systems of equations.
1. x+dy— =z42u= 1,

—10x + 9y — 10z +Hu = 0O,
—2x 4+ 3y —3u= 2
6r + Ty + 32 = 35
Fr— y4+ 424+ u= 0,
3e+2y— 2+0u=—1L
2. a+byt z+2u= 1, N
—2x 4+ Ty +fu= 5 . A
—z 43— z4+ u= 0 \\>
2z + ¥ — 3 = —1, {}
Bz + Ty +324+3u= 1 ',:\ Ny
N\
3, —4z —y+8 4 Hu= 2 '.:Q 3
e — 9y + 52 + 160 = —1, AN
e fytd = 1, \\}
2 —y+32 4+ Tu=—1, \>
frty— 24 2u~= 0 47
&
4, =5z 4+ 6y 4+ bz — lln = —1, N\
et y— = 1, (\NY

—c 43y 442 — 2u= —L\
Se+ w4+ 224 Tu=_B

24+ 3y 4+ Tz + 5u ==:3;~?.
6. ©— y+3+ u—‘hﬁﬂ— 12,
2y — z-@\u—?— v = 3,
—x — t;—|—23“+ u - Gy = 14,
:r+3y—s\ —{— w— B = —11,

20 4 Gipd- V2 20— = -5,

—4z it 22 — Bu — 2 = Q.
8. —3:4—31;—1—43—!-31{:0,
Gy 4+ 2%+ ow =1,
i”}t+ ¥y— z— u=4,
g{\‘h:— ¥+324+ u=5,
\::‘«, 4x—2'y_—|—5z+2u=2.
,.\j:}"z. Te+2 — 2 +3u= 1,
\/ a2y — = = 5§,
dz+ v+ z4+4u= 0,
Qe+ y— 2 = —1,
—x - 2y + w= 1,

B. Ay + Tz —2u 4 v = 2

T+ y+3%—2u—~ 2= 1,

—Te + 3y — 2z — 30 = —§,

— 2 + 2 +2v = 1,

bx+ y+224+ w4 v= 3,

—dr 42y 22— uw— p= -2
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9, 5z + ¥ + u=
e 4 8y + 62 — 2u = —
20— y— 24 u=
z+3y+2—- u=
Tx - 24 2u =

1. 2r— g4 z2-— u
—2e+ by +2et 3wt v
s+ v+4242u— »
Br — 2y + 32+ w+20
—dr + Ty + 42 + Fu — 20

1, =+ v+ 32— u-+2v
e— ¥+ Z2d w
- — Y —2ut v=
drt+ v+ Bt 2ut v=-—
S+ 3y + 112 + 5

-2+ 22— uwt+ v=

120 =2 +2 —32— wit v
3¢+ ¥ +5u— v
Hr — s+ 2u+ v
3r + 3;—4z-—4u+311

by — Sz + u =12, N\
Tr - y—2— utd= 64

b e B2

It

I
|

I
Bt G0 D

[
/
4
A\

k=4
Il

=R =N
V4
£

([
—

Il

[
Kl
7
4

3. Linear homogeneous equalions in n unknowns. If & =0,
+, k, = 0 in (26), the coudtions are called linear homogeneous
oquations in n unknowns: Then the system of equations 13

\’\6{,1'];221 Tt BT = 03

S

(85)

X/

»\.\ g1 + - Gy = 0.

For #his ;v;-atem it is true that r, = r because a minor which is 1
t—.}.le”.ﬁ.m‘ 1;ut not in the c.m. has each element in jts last column
»2ero and therefore is zero. Now (85) i satisfied if each of T
z, hag the value zero. This solution is called the zere .solutwﬂ 'bc'
cause it is the set of n zeros. It is also called the trivial sOlu_tlm.l'

It will be proved now that, if there is a solution of {85) “"hl(?}} 18
not the zero solution, then r < n. This will be done by fo‘qﬁg
that, if » = n, then therc is a contradiction. If r =, then by
theorems 6 and 2 there is exactly one solution, and 1!; is the 7€T0
solution. This contradicts the hypothesis that there is a solution
which is not the zero solution. [t will now be proved, conversely,
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that, if » < #», then there is a solution which is not ithe zero golu-
tion. Since r < n, therefore n —r = 1. Also, in theorem 6 an
arbitrary numerical value is assigned to each of n - ¢ variahles.
Therefore here an arbitrary value is assigned to at least one varia-
able. Thus, for cxample, a solution is obtained if the value one is
assigned to each of these # — r variables. This solution is not the
zere solution.  Therefore the following importent theorem has
been proved. A

TuroreM 7. A sef of ¢ linear homogeneous equalions tn n voridbles
has a solulion which is different from the zero solution if a(m? “ondy f
the rank of the coefficient matrix of these equations 2 less than n.
A set of n linear homogencous equations in n variahles Jias o solution
which s different from the zero solution if and onl‘g@f the determinant

of the coefficients in these equations is zere.

':"\\"
PROBLEN‘[S\ v

Discuss each of the following systems, ofetuations.

~

L oe42+8— u=0 %
dr 4+ 6y — Tz + 2u = 0, O\
2 — y— 24 w=00y"

3r 4+ 9y 4+ 2: =&
2 -i:’\
. T — #+ dakJu =0,
e — ¥ \\-— 2y =10,

73'+2y-——4z— w=10
*23:—|— y+22+3u-—[}.

3. 2::;,\’—5‘\y+ 2 -—3u =0,
k- 2y — 4z —Tu =0,
"s’\$+ g+ z4+2u=0,

N e — 4z — 2y =0
) |
\‘; Y4 p— yA4243u=0,
2r +5y + 2 =0,

—r 4+ 3y +42 — 2u =0,
—3r+2y—~ 2+ u=49,
br+ y— z4+4u=0

6. 2z 4+ y4+3z2— u=0,

- + z4+4u =0,
e+ 8y — z+4+2u=0,
xr + 2y — 34 =0,

4r — y-+22 4+ wu=0
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6. —ux+ 5y + 9u =10,

2r — y+ 3+ 4w =0,

—5x+ 4y + 22— w=0,

a4+ y—22+3u =1,

58— y— 82+ 3u =0
7. z— y+ 2z 4+ w0

3z + y+ bz — 2u =,

— + 24 2u-— To=10

2+ 3y — 424 u+t B =0

r—8y+ 128 — u—1lr =0

O + 4y 4+ 8z —3u+4 60 =0, A

e — y+18%2—Tu+ 2 =0 )
8. —3z + 2y — 10z + bu =0, O

18 — y+ 224 5u+To=0, N

Ip4 y— z2+3u+44dr=0, "\ ’

—x + 244 —3w=10, \..."\"'

br— ¢4+ 2+ 3u =0, \J

3+ y4 Te+ 2045 =0 O
9. 48 ~Tet2u-dd=0, 4O

z48y—52— ut+t=0 C’,\

3z + 2 +ou—o=0 O

% — y+3dsuw— v="0 ’.:k ’

—z 4 4y — 8z — u 4+ 30 = 0\

dx + Hy — 3z — Bu — v=“:l):’..'
10. 8¢+ Ty + 32 A4 Ny =0,

dr + Ty + 1024 & 100 =0,

3y — ek M + dv =10,

z— ¥+ 2u =1,

9p 4+ By HNMz 4 uw— =0

=3z — @(F T+ 2+ = 0,

5 _i_x’{}y"']“ hz 4 fu — 20 =0
In the prdof of theorem 6 one method of obtaining
of 0(11,1@1 hs (85) is exhibited, because each set of arbitrary values
of thewt — r transposed variables determines & solution, and ea.(:h
”&ﬁf(m can be obtained in this way. Another methed of obta.m—
\Nhg all solutions will now be illustrated by means of t}}e following
set of five numerical lincar homogeneous equations in four un-

all solutions

knowns: 2y — 209+ 7y — #a=0,
%y — @ —2m3+ 2 =0
(86) —z, — 4o + 723 — bzs = 0,

8z, — Tra — 413 + 24 = 0,
by -—4;::2-—3x3~!— $4=0'
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By lemma 1 and lemma 2 it is proved that r = 2, », = 2, By
theorem 6 it is sufficient to solve the first two of cquations (86).
Thus, for example, the solution for z; and x; is

1 — i
(87) . &) = %.Eq — Xy, *g = gy — 4.

If the arbitrary values 0 and 1 are assigned to a3 and 2, respec-
tively, then the solution —1, —1, 0, 1 is obtalned. Il the arbi-
trary values 3 and 0 are assigned to zy and a4 uwpuhvelv then
the solution 5, 4, 3, 0 is obtained. O\

A method of (Jbtalmng all solutions from these twg 'y wrticulur
solutions will be explained next, The first stop in the P\]ﬂ.nmtmn
of this new method is to show that, if e, ¢, Cay, (*4 i @ solution of
(86), and if m is an arbitrary number, then mc\ Ties, Wcy, My I8
also a solution of (86). Thus, since ¢;, coNeay ¢4 st ls,fy (RGs), it
is true that 2e; — o — 2e5 + ¢4 = 0. pHehee m(20 — ez — 263
+ ¢4} = 0. Honee 2(mey) — (meg) —.3(Meg) + (mey) = 0. Hence
mey, Mz, Mey, meg satisly (86y). Swpilarly it i proved that they
satisfy each of equations (86). TheSecond slep in this new method
is the proof that, if ¢, ca, ¢y, cat and dy, dy, dy, dy are two solutions
of (86), then ¢, + di, ¢, R 3, ey 4+ dg, ¢g +dy is a solution of
(88). Thus, since ¢, tapcs,'cq and dy, da, du, dy satisly (86,), it is
true that e; — 2¢, —f;sQJ — s = 0 and that d;, — 2ds + ds — ds
= 0. Tlence (C\t d) — 2(es + do) + {ca +da) — {ea +-da) =
0. Hence ¢1 48diy ey + da, ¢y + da, ¢4 + dy satisfy (86,). Simi-
larly it is proved that. they satisfy each of equations (86).

Finally, 66", and g be arbitrary numbers. Since —1, —1,
0, 1is 3\%}111’51011 of (86), therefore mq( —1), m(—1), m1-0, mq-1
is a Q&lﬂﬁlon Also, since 5, 4, 3, 0 is a solution, therefore mo- d,
Mg, Mme-3, me-0 I8 a solutlon Hence also #,(—1) + a8

;ml(_l) T+ mg-4, me-0+ ma-3, my- 1 4= me-0 s a solution. '1th

\ VI8 & very important property of the particular solutions —1, —1,
0, 1 and 5, 4, 3, 0. Another very important property of these
particular ?01111'.101’1&3 18 that overy solution can be obtained in this
manner from them. This will be proved in theorem 8. It will
also be proved that ncither of these two partieular solutions can
be so obtained from the other. Winally, it will also be proved
that many pairs of particular solutions have these same properties,
which the pair —1, —1,0, 1 and 5, 4, 3, 0 of solutions have, with
regard to equations (86).
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To illustrate the discussion which will be given later if # is arbi-
trary the preceding diseussion of the numerical equations (86) will
be summarized in terms of the new idess of veetors and lincar
dependence. An ordered sct of n numbers is called an n-vector.
In the preceding discussion # is four, and each solution of cqua-
tions (86) is an n-vector. If the solution {1, s, £s, ¢4) is desig-
nated by vy, then the solution (mey, mes, mes, mey) 15 designated
by my. The vector my is called a scalar multiple of the vector .
If the solution (dy, da, dy, d4) is designated by 8, then the solutiog, >
(ey 4+ dy, 60 + do, e3 + ds, 64 +dg) 18 designated by v -+ 8. ‘Q\[t\is
not true in gencral that {eidy, cods, c3ds, cads) is also & selhiion.
Thus, for example, the vector so formed from the particuldf solu-
tions (—1, —!, 0, 1) and (5, 4, 3,0) is (—5, —4, 0, 0)but -5, —4,
0, 0 do not satisfy (86,). Therefore, as solutiongoflinear equa-
tions vectors are added, but they are not multiplied. However,
ag noted earlicr, there is a scalar multigli{@};ion of veectors by
numbers. RS

The set of all solutions of (86) is arhihgtance of a linear space of
n dimensions because 1t has these ’twi:r properties that the sum of
two members of the set is also 'aflriémber of the set and that the
product of & number and a mc;s’m");cr of the set is also a member of
the set. Such a set is algo ealled a vector space of » dimensions.
Another property whick('a linear space of n dimensions has, by
definition, iz that the kvector each of whose elements ig zero is a
member of the space, This vector is often designated merely
by 0 and is calléd’the zero vector. The zero vector is a solution
of every systéni”of homogencous equations in = variables. If at
least one, .o\f}u‘l, ks, - - -, kg is not zero, then the zero veetor is not a
solution\of the system, Therefore the following discussion applies
to thie\solution of hornogencous equations, but it does not apply
tothe solution of non-homogeneous equations. )

\M‘: Tt was proved that, if v and & are two solutions of (86), and if
1 and mg are two numbers, then myy + m2d is a solution of (86).
The vector myy + med is called a linear combination of the veclors
v and 5. Tt will be proved later that, if { is a solution of (86), then

there are numbers my and my such that { = mg(—1, —1,0, 1) +
mq(5, 4, 3, 0); that is, { is o linear combination of (—1, ~1,0,1)
and (5, 4, 3, 0). This is one of the reasons why (—1, —1,0, 1)

and (5, 4, 3, 0) are said to form a fundamenicl set of solutzons of (86).
The other reagon is that neither (5, 4, 3, 0) nor (=1, —1, 0, 1) is
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a multiple of the other. This last fact can also be stated by say-
ing that, if m; and my are two numbers such that m(—1, —1,0, 1)
+ mz(5, 4, 3, 0) is the sero vector (0, 0, 0, 0), then m; = 0 and
mg = . In general, fwo vectors ¥ and § are said to be linearly
independent procisely when, from the fact that myy + msd iy the
zero vector, it lollows that m, = 0 and ms = (. This means that
two vectors v and & are linearly dependeni precisely when there
are two numbers m and m/, at least one of which is not zero, such
that my + m’8 ig the zere vector. Similar definitions arc maded
for more than two vectors. A fundamental set of sohmonK of
(86) 1s also called a basis of the set of solutions of (86)

\.

ool

PROBLEMS 4y

Solve cach of the systems having r < # in the problers o page 212 for r
of the variahles in terms of the remaining n — r variahlast Ohtain one particu-
lur solution by assigning the value 1 1o one of the trawdposed variables and 0
to the other transposed variables. Obtain a segond” partienlar solution by
assigning the value | to a difforent one of the twmpused variables and 0 to
the other transposed variables. Repeat the pwcé%% until the value | hag been
assigned to each of the Lransposcd varmhkzs im turn.  Tabulate these w — 7
particular solutions. .,' \

The following lemmas will, bo :ﬁsed in the proof of the funda-
mental theorem 8 which states that, if 7 is less than n for the
equations (33), then there” iz a fundmnental set of solutions
of (85), and that this ‘fundamon‘ral st conslsts of n — r linearly
independent bUhITIO\ It is to be noted cspecially that these
lemmas ave gvnera1 slatements concerning ordercd scts with =
numbers in agefand that it is not assumed in the proof of those
lemmas thaﬁ\ﬂle vectors are solutions of (85).

If thé\n-Veutor Ci1; Cizy v, € 13 doesignated by ¢, then p

f-vectdes' {y, -+, {, determine the matrix

) C11 Clz e Eqp
\.
\/ €21 oy *-c Cay
(8%) ' ' ‘

~Cp1 Cp2 e Copn
Luanaa 3. If p and n are positive iniegers such that p = n, and f

p n-vectors are linearly dependent, then t}w randk of the matriz of these
veelors 18 less than p.
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Proor. The linearly dependent vectors ean be rearranged so
that, after the notation ¢4, - .., {p 15 assigned, lhere are constants
g, v ey My such that my £ 0 and myey, - - - Myl 13 the zero
vector. Therelore

Ml + Macay - -+ mpey = 0,
M1l T Mialoy -k -+ mye,, = 0,
(89) . - . "
N

N s
9!

N

M1y + Malgy +--- L Mylpn = 0. \\

N

Let D designate the particular p-rowed minor of (88)'\{ﬁﬁose gym-
bol is $O
1 '

{90}

Cp1

Let D, designate the determi.uaqﬁ’ﬁﬁose symbol is

«s
MIC1INSY - MyClp

Cg{{ et Cap
(01) W '
N
L >
0' Nl
AN/ Cp1 Tt Cpp

Thercfor@fi,\ = m D, Alsom; # 0. 1f it is proved that D; = {,
it will IQHD'W that D = (. Let I}, designate the determinant

i\‘f:.‘ ] mic1y + Mtz v MuCry + Motsy
r‘\) W 4 C'}l P (1‘2?
p .
(92)
Cp1 e Cpp

Then Dy = D;. Again, il Dy is obtained from (92) by adding to
the first row of (92) mg times the third row of (92), then Dy = Dy,
If this process is continued, there is obtained a determinant whose
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symbol has in the first row and the jth column the mumber mye;
A=+t myep;.  Henee, by (89), the first row is a row of zeros.
Therefore this determinant is #zero, and D = .

In the same way it ig proved that cach p-rowed minor of (88)
18 ZOT0.

PROBLEMS

1. g = (1,25 1yand iz = (3, —2, 1, =7}, find {3 such that 3¢5, + & —
3¢ = (. Find the rank of the matrix formed by these three vectors and thie
illustrate lemma 3. A\

2. Proceed as in problem 1if {1, {9, and {4 are such that —20 + Q 2) Ci
= 0.

8. Proceed as in problem 1l 1 = (—1,3, —2,1}, iz = (1, 1;.(’;‘, —5), and
f3is such that 85 + 206 — §5 = 0.

4, Proceed asin ploblmn 31 Iy, £2 and a4 ave such that Q\%— Uy - 4y = 0.

B. Ifr; = (1,0, —3,2, — 1), f2 = (2,8, —1,0, -1} &k<(0, ~1,3, —2,1},
find Ig such thal 25 + fz + 5¢3 — 2ts = 0. Tind_thé rank of the matrix
formed by these four vectors and thus illustrate lemiy® 3.

6. Procced agin problem 5if iy = (—1,1,2 ,3}‘1) =102 —i,1, —1),
ta = (0, —4,1, —%, —1}, and ¢4 is such that, 2{'1 2 Bis i3 - 20 =0

TIg = (1, —1,1, 1,00t = (2, —1, 48, —2), 13 = (1, 4, L, —2, —2),
find Iy such that & —|— o 4+ &3 — 2iy —~lf'l ind the rank of tho matrix of
these four veetors and thus illustrate. Lemma 3.

8. Proceed asin problem 7 for &l g'g, S’s and s such that 35, — &2 — 0s + 25
=10

9. Proceed us in problem 7\?;1 (1,0, =1,2, =B}, {z = (—1,3, —1,1,0),

=2, L0, L1, andgaigsuch that o+ — 20+ & = &
10 Ploceed as in proiﬁﬂe\m 9 for ¢y, £z, 1, &5 such thut 85 — fo — 20 1+ 886
= 0.

LEnmma 4. If%) and n are posilive integers such that p < n, and of
the rank of-@matriz of p rows and n columns s less than p, then the
P nmect&s which constitute the rows of this malriz are linearly de-
pender{i

PROOI‘ Let 7 be the rank of the matrix, The notation (88)
1¥ assigned after the rows and columns of the given matrix have
been rearranged so that in (88) there is a non-zero r-rowed minor
in the apper left-hand corner. Lot the n-vector which is the first
row of (88) be designated by ¢,. In general, let {; designate the
n-vector which is the ¢th row of (8%),

It will now be proved that ¢, -+, {, are lincarly dependent.
This wilt be done by exhibiting numbers m,, ---, m, such that
my # 0 and that mi 1 +- -+ mpe, = 0. Thus, cach of equations
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(89 will be proved. The effective numbers my, - -, m, will be
found by consideration of an auxiliary determinant B whose sym-
bol is

C11 C1r  Cia
(93)
Cr1 Crr Cyn
Cp1 s Cpr Cpn O\

Let Mj, «--, M,, M, designate the minors of the element$.0f the
last column of B. Tt is to be noted especially that fchg;}notat.ion
was chosen oviginally so that 3, % 0. Expansion of\g by its last

column gives +£0)
W\

(94) B = Z (_])i+r—i-1€£nﬂ_{£ 4 (__Ur—i-l:i-.r:’-i-lcpﬂﬂfp_

i=1 PN
Also, B = 0, since B is an (r + 1)-1‘059(6(1 minor of a matrix of
rank . Let my, -- -, my be defineghby

mi= (—DFHMAT G =1, ),

3

(95) m=0 % (<i<p),
iy = Mo
Hep {‘,\)’

Therefore (94) be{Qmes

(96) O 0=muc oo + MpCpne

Therefore &lie lust equation in (89) has been proved.
Si.mils:ﬂy, if 4 is an integer such that 1 £ 7 £ n an
ﬁne\dtby" replucing the last column of B by ¢, s
By 0, either because it is an (7 -+ 1)-rowed minor of (88) or be-
Coplise it has two columns alike. Also, for cach value of j the
Y Tinors of the clements of the last column of B are My, -, M,
M,. Hence, for the same values of my, = My it is true that

d if BJ' is de-
Criy Cpjy then

97) 0 = mger; 4 F mgla G= 1,0 m)

Sinee cquations (97) are precisely equations (89); it has been
., {p are lincarly dependent. It is to be noted

proved that £y, - 4
-, tr {p are linearly

that it has been proved, in fact, that': f1, ¢
dependent. This is true because (93) mvolves only {1, -+ §n {p
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It is evidenced also by m; = 0 (r << < p) in (95), Similarly it

is proved that, if r << ¢ < p, then ¢y, ---, &, ¢; are linearly de-

pendent. The coefficients m'y, ---, m';, m'; in this dependence

are obtained by using a determinant formed by replacing the last
" row of (93) by i1, - -+, Cirs Cin.

PRORBLEMS

Tn each of the following problems show that the rank r of the mateix formed
by the p vectors is less than p. Tind r of the vertors on which each of €fe
remaining 7 — 7 veators is lmearlv dependent.  Exhibit each such depepdchce

as an cquation. ¢\

La=(L-521,5=0-4,13,5=(30-0
f4 = (2, —5,5, 1) AN

2. = Lz 15131);§2: (—1,5,2, 1):?-'5: (0,1,1,1),?&?2 (0; _23()? 1)

3. = ( ]-r 1: 01 2)1 {z = {1; 3) 2; _‘4-)1 = (0: 2: 1,&%:1)}
te=10(201, —2). 9

4 L =(-L1L1,1), =0 -502), = (2534 —1, 1),
fa= (1,1, ~2, —4), ~\\'

B. 1 =(31,2, -1,0), 2 = {(—1,1,0,3, 2‘)}\5“5 ={h38 L, —1, —1},
fa=1(2,1L,0 -1, —1), {5 = (=5, 1, 56,4, 1).

6. 1= (5r _ly 2) G; 2) {a = (l U '_?'1 ._1 '3) 3 = (2y 1; 4; _:-J': I-)y
=124, —3,4), yﬁ—{304r1 —2).

7.0 =10(522 -8 —4, —1, —1"),..{ ={1, —-1,0,21,3, —1),
=13 1,1, —1,0,2,1), 4 4+ =1{2,1,2 -5 -1, —1,0),
G=(-1,1,102 — 1~3§; {6 = (=321, -8, —3, —9,1).

8. ;l:( ] 57 1}‘: :191): g—Z (Q!Ir 1!052J 1J “1)1
b= (—1 32 LOC0), f= (o1 225 15 1),
om=(1,0, ], \Is,o' S =25 ¢ =(—1,2,4, 50,0,0).

Lenwa 5. Lett p Gid n be positive integers such thal p < n. Then

p n-vectors cp\nearly wndependent if and only if the rank of the
matriz of § lh& veelors s p.

PRO&\ The statement that p n-vectors are lincarly independent
onlyr ifi the rank of the matrix of these veetors is p means that, if the
R xhctnrc are lincarly independent, then the runk is p. This state-
Sadent will now be proved. This will be done by showing that, if
the vectors are linearly independent and if the rank is less than p,
then there is a contradiction. By lemma 4, if the rank is less than
p, the vectors are dependent, and there is a contradiction.

Next it will be proved that, if the rank is p, then the veetors
arc linearly independent. This will be done by showing that, if
the rank is p and if the rows of the matrix are linearly dependent,
then there is a contradiction. DBy lemma 3, if the rows are de-
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pendent, then the rank ig less than p, and there is a contradictiorn.
This completes the proof of lemma 5.

It is to be noted cspecially that p = n in lemmas 3, 4, and 5.
T.emma 6, in which p > n, will now be proved. From the matrix
(88) form 4 new matrix 4 by adjoining  — n columns, each ad-
joined column consisting entirely of zeros. Let «; designate the
p-vector which is the first row of the matrix A. Then o =
(11, €12, *+*, €1a, 0, +--, 0}, in which the lasl p — » elements are
zeros.  In general, define o; = (¢, €39 <<+, €, 0, -+, O), if (>
L, «++, p. Then oy, --+, p I8 & set of p p-vectors. Now the rank
of A is loss than p, since each p-rowed minor of 4 has at leastone
column of zeros. Therefore, by lemma 4, with p and noteplaced
by p and p respectively, it is true that oy, -+, dz are linearly
dependent. ‘This moeans, by definition, that théf® are numbers
my, -, My, al least one of which is not zerd{ 3uich that mie; +
<+« Myperp 18 the Zero p-vector. This meahavthat equations (89)
hold, and also p — »n equations formed similarly from the last
p — n columns of 4 hold. FEach of th&e“last p — n equations is
the equation ;-0 +- - -+ m,-0 =0pince each of the last p —n
columns consists entirely of mm& These last p — n equations
therefore give no informationt ITowever, the fact that equations
(89) hold means precisely thiat mfy +- -+ mpufp = 0. This states
that ¢, -- -, ¢, are linggyly dependent. Thus the proof of lemma
6 is completed. s\

Lemma 6. F _}‘lp\%’zd n are positive infegers such that p > n, then
p n-vectors axg finearly dependent.

These lfe@;r;as will now be used to prove that, il the rank r of
the ¢ lifteht homogencous equations (85) is less than », then there
is a\s% of n — 7 lincarly independent solutions of (85). Asin the
prob! of theorem 6, n — r of the variables are transposed, and 7 of

-~ :thfé equations are solved for the remaining variables in terms of

N the transposed variables. The equations and variables can be re-
arranged so that in the notation (85) the r cquations to be solved
are the first 7 equations and that the transposcd Variable:s are
Teg1y o, Tp. Now lot the numbers dyrqq, <7y d1n be assigned
to &,y1, -+, @y Tespectively, and let the values of zy, -~ -, % be
computed. Let these values be designated by diy, -+, (1.1, re-
spectively. Then dy:, -+, dir 1ty ) d1, is 2 solution of
(85).
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Now it will be proved that the numbers d; ,., - -+, d;, (F = 1,
<+, n — 1) may be assigned so that the determinant I whose
svmbol is
dl,r-{-l e dln

(98)

dn—r.r-{-l o d'n—r.n

is not zero. One way of assigning these values so that D = o
that in which the diagonal clements in (98) are ones and tb\o Ton-
diagonal elements are zeros, Then for these values it is/truethat

D > 0. Now eonsider the matrix ,Q’;‘\ g
f.iu .- tffn (.il.r-;—l '.M:\dm
(99) N
Y
dn——rﬂ Ut dﬂ,—r ¥ dn---r,a"-]—} - T dn—r 7,

of these n — 7 solutions. By lemma: 5, with p, n there replaced
here by n — », # rospectively, it 15.131110 that these n — r solutions
are linearly 'mdefpmdmt These *solutions will be designated by

b1, *r 7, s respectively. Thus é; 13 the m-vector which is the
#th row of the matrix (@
+\J

“87 PRORLEMS

For each of the~ faHmwng aystems of equations find the rank r of the coefli-
cient mafrix, ami\sﬁlve the equations, If r < n, find & sot of n — » linearly
mdependent éblntloms of the system.

:u\-i—)z; —dz — u =0,
AN ¥+ 2z — 2u =0,
R\ w3# + 5y - 82 =10
'2x—5J+93—5u—0

\3 2. x4+ 3y — 2 +4du =0,
2Ze+ y+ 24 u=0,
81 — y+ 42 —2u=0,
Vo + 8y 4+ z 4+ Tu=0.

. 20 +3y+ = — u=0,
24+ y— 24+ Hu=0,
dr+ 5y +82— Tu=0,
z+ 2y + 2 — 6u=0,
Az 4- 6y — 2z 4 14u = €.
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-

e+ ¢+ 2+ u=0,
Zr - y— 324+2u=0
—z 4+ 4y + 10z — Bu =0,
43y + Tz —3u=46
Tz — 22 +3u=0

B. x—2y+ z2— su=0,
-+ 3y —224+ u=0,
Bz — Gy + 6z — 10u = Q,
x4+ y+ z—12u =10,

2y + z— 3u=0

.
p N
Y/

6. 6z — 3y —2:— 3u =19,
3r+ 6y — 2+ %u =10,
Jr+ y— z2+2u=10 Y
—z 43y +2+5u=10, '\‘K
2x— ¥+ 2 =0. A7)
‘\\o

7. z—y+ z+3u— v=0 '\
—Zx4y+ 22— uF+3=0 \’s
x4y + 20 - =0, O
—bx —y 432+ 3u+tb =0 N\
fig 482+ ut2n=0 :“3‘
-4ty +8 =0

NS

8. 2r— y+ z+ wtd -;ﬁ"gtu‘={},
4o ——31L+21J~,—,’3"4w=0,
3y — 2— u N 2w =0,
2z — 3y + 32 4+ Bul KT + w =0,
-z + 2y + 8yt v+ fw =0
@ — 0y + 32X\ + 20 — 10w =0.

9, T — ;:g.qi“)22+3u+ p— w =10
e —-,ngf- 6z +du+ v—dw=>0
2x,iK~§+ 7 — 24+ w=0
ERY g+ Tz + 2w + 2w =0,
Qﬁ:ﬁ'ﬂ3y—mz+5u+4v—2w=0,
,;‘.‘\31: + z4 u— v— w=0

n*:\,l&. QG+ y— z2—-3u+d Gv=0
\,’ z—6y+3+b— v=0
x4y + z+2u- ¢v=0
—x 4 2y - ut =0,
z2—3y+ 2+ ut 2v = 0,
3z + y—-Zz—-fiu-}—]Oals().

Tt will now be proved that each solution of (85) is a linear com-
bination of these particular n — ¥ solutions, 81, -, Ga—r This
will be done by proving, more gencrally, that, if 81, -+ Sas is
any set of n — r linearly independent solutions of (85), and, if &
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Is any solution of (85), then & is linearly dependent on &, - -,
Bu—r. Since 81, + -+, 84, is a set of n — r linearly independent
sohztions, by lermma 5 there is an (n — r)-rowed, non-zers minor
in their matrix, Let the notation

&= {dy - &y, d’r-{—l; Y dn):

(100) .
= (da, » diny iyt oy dim) GE=1,---,n—7)

be chosen so that (98) is this non-zero minor. Let a, gy, - - -, Ay
be defined by
o = (dryy, -, da) A\

(101) O
o= A(dirqy, -, di) (E=1 - n— '3(‘)'?‘.

Since (98) is not zero, it s true, by lemma 5 wil 1P replaced by
n — r and n replaced by n — r, that «, - - - g are linearly in-
dependent.  Also, by lemma 6 with » replaced by n ~ » and p by
n — 7+ 1, it is true that @, a7, -+, o, “}19 linearly dependent
and, in fact, that « is lincarly dependenton o, -+, a,_,. Hence
there are numbers my, - -+, m,_. such.that
R
degy = iy e ‘|:‘v s Hin sty v rid,

(102) : C AN

. .~< .
dn = oy, R L{ T S
&

These equations yay be summarized by
(103) dj' = mlyl; +- ?n'n—rdn—f,j (J =r-+1 .-, ?‘.’,).

Next it-“{};hl be proved that, if 7 =1, ---, 7, then equations
similayﬁ})"(lOS) hold and that the same numbers mq, - - -, ma_s
appewns in the new equations. Now in the proof of theorem 6 it
svgsitound that #y is a linear homogeneous function of the trans-

\pésed variables @,y y, -, x, if the original equations are homo-
gencous. Let the notation &, = b, g1 s Braa, be used.
In general, ihere are constants b,, such that

(IU'L) Xty = bs,‘r-f—lx‘r-i-l + et "I_ b.m:rn (S = 1, e, F)

Since di, +++, dy, dygq, -+ -, d, is by hypothesis a solution of (85),
it is true that

(105) ds = bs,-r-{—ld?‘-i-i —f— . '+ bsndﬂ (S = 1, ey, ?").
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o

Also, since (diq, -+, dir, 41,041, ** +, d1s) 15 & solution,
(106)  dis = bsppadi oy + -+ bndin (5=1, -, 7).

In general, since (dy, '+, dir, dipqr, + 7, din} I8, for each value
of ¢ from 1 to » — 7, a solution of (85), it is true that

(107) dis = ba,r—}—ldi,r-fl +' * '+ bsndiﬂ
’ (s=1, -, r;i=1, -, n =<&n

Now equations (103) are to be multiplied by b,; respéctively,
and the results added. The left-hand side of the restlfing last
equation will be dy 1y ,q1 ++ 0+ dibia. By (108%with s = 1
this number is d;. The coefficient of m; on the piéht—hand side of
that equation will be dirpibyrpr -+ degly® By (106) with
s = 1 this number ig d;;. In general, the egefficient of m; on the
vight-hand side will be di y41by vt + - ¢ denbin. By (107) with
s = 1 this number is d;;. ITence ithag\been proved that

(108) d-l = mldll +,+ }nﬂ—rdn—-r,l-

Similarly it is proved, by Jﬁﬁiﬁplying equations (103) by bg; re-
spectively and adding thesrggults, that

e e
And in generalyit 13 proved gimilarly that
(1{}9) d" %’?"?';f‘ldlj 4 4 m-n.—rdn—-r,j (J = 1, “eey ?‘).

Ty t-fté}lot-&tions (100) for & and &, -, 6, equations (103)
an(L'{\\tOB) show that the vector & is a lincar combination of ér,
22 ;", 5,_,.. This completes the proof of the following fundamental

PR ?;ﬁf:()rem.
\\ ) A fundamental set of sohutions is = set which consists of linearly
independent solutions and which has the property that an arbi-
trary solution is a linear combination of these linearly independent

golutions.

TamoreM 8. If the rank 7 of ¢ linear homogeneous equations in 7
variables 13 less than n, then there is o fundamental sel of solutions

which consists of n — v solutions. This fundamental set consists of

the n-veciors 81, **+, dn—s, 0 Which & is the selution oblained by
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assigning the value I o the @ih transposed variable and the value zero
to cach of the other transposed variables.

It can easily be proved that there are many fundamental sets of
solutions and that each fundamental set consists of # — r soliutions.

PROBLEMS

1. For each problem on puge 222 find a fundamental set of solutions whitkl
is different from the fundamentul set found there, FExpress euch solution in
‘this second fundamental sef as a linear combination of the solutions in ttré\ﬁp\st
fundamental sct, ‘\

2. 1n problem 1 express cuch solution in the first fundumental set as a
linear combination of the solutions in the second (undamental beﬁ :

For each of the following systems find the rank + of the“t‘.?ie\fﬁnicnt raatrix
and solve the equations. 10 » < n, find a fundamentul sef\oFsolutions. Then
find a different fundamental set. Express cach solutioginthe first fundamental
set a5 « linear combination of the solutions in the{éﬁ}nd fundamental sct.

5. -2+ 22— u+ »=0, 4. 20082y + 4z — 3u = O,
43y — 524 2u =0, ..x’-|-2y~— 2+ 3w = 0,
bz + By — 182 + 4u + % = 0, X - g + u =0,

3z +4y — 924 3u+ v=1, :'~ 8 — + Tu =10,
Sy — Bz+3e— v=0 8 3x— y+ z42 =0,
- Zr 44y +22 - u=0.

P4\

B, 2¢+4+ y+ z+3u=0;‘",\ 6. 22+ y - Tz— w4 v =0
Sz ¢y - 74 du 0™ #— y— 224+ w4+ Hw=20
r—= ¥ +2u,%, S — 29+ z42u+4 182 =10,

— 2% + 32 +,8u.2 0, Te 4 by + 302 — bu 4+ Te =0,
3z «22244}1}:0, 3r 43y + 162 —3u+ o =0
—F— Yy A2 =0

'"\§~

. 22— Wb 2+ Bu— 2=0, 8 Jr— y+ 224+ u4 =0,
2154*,"3@“‘24" % =0, ¥— 32— u+4+ 2v=0
—-:;:.;f—""éy + 4du -+ Tr =0, & —2y 1+ Bz— wu =10,

wEE— y— 24 w-—8 =0, T2 — hrddut 30 =0,
Jo — 12y 4+ 3z 4+ w — Oy =0, Bzt y— 4z+2u+120=0,
bz — 3y 422+ 10u — v = 0. 1l = 7y + 162+ u 4150 =0,

- Other proofs of these theorems and other facts about homo-
geneous equations are in the references cited at the end of this
book,

4, Geometrical interpretation if the number of varigbles is two or
three. Equations (26) may be written more simply if n = 2.
Thus, if z; is replaced by @ and x2 by y, and if 4, is replaced by
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a; and ;s by b;, then these equations become

az + by = ki,

azx + bay = kg,
(110) ’ ; -

agr + by = kg

Q"
It is to be noted that a; # 0 or by ¥ 0, by the hypothesis in see-
tion 2. 1n general, ¢\
e\

(111) a; =0 or b;#0 (=1, -, ¢ ™

Now, if x and y are interpreted as rectangular f!ﬁoz:ljlinates ina
plane, then the locus of the equation ax + by ja}k,"m which e = 0
or b 5= 0, is a straight line. The numbers 3Nk in the equation
of this line determine the direction of tl}(Qliﬁe and a point on the
line. Thus, if b = 0, then this line is perpendicular to the X-axis,
and the point (k/a, 0) is on the lide\VIf b 5% 0, then the slope of
this line is —a/b, and the point (0,%/b) is on the line.

It will now be proved that,the lines Iy and Lo, whose equations
are Ry

~ dlm ~+ bly = kl,
.ti\ ol + bgy = kg,
are parallel if anh%nly if there ure constants p and ¢ such that
(113) pak\ézéaz, pby = ghy, and p =0 or g7 0.
Ti (113{}}61(1 and if p= 0, then g # 0, a2 = 0, b2 =.0, and hence
(1LOSS contradicted.  Thercfore (1 13) and (111) imply p # 0.
Inthe same way they imply ¢ # 0. Now, if & = 0 1n (113), it

(112)

Lfollows that by = 0, @z = 0, 6y # 0. Then Iy and L are perpen-

N

“diculsr to the X-axis and henec arc parallel. Again, if b # 0 in

(113), then by # 0. Then the slope of Ly is —a;/by, and the slope
of Ly is —ag/bp. By (113} these slopes are equal, and Ly is parallel
to Lg.

Next it will be proved that, if Ly is parallel to Ly, then there
are constants p and ¢ such that (113) hold. First, if & = 0, then
L, is perpendicular to the X-axis. Therefore Lg is perpendicular
to the X-axis, and by = 0. By (111) a1 # 0 and a; 0. If ¢
and p are defined to be ar and ag respectively, then (113) hold.
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Again, if by # 0, then [; iz not perpendicular to the X-axis.
Therefore Ly is not perpendicular to the X-axis, and by, = 0. The
slopes —a,/b and —ay/by arc cqual, since the lines are paratlel,
Hence byay = byap.  Therefore (113} hold if ¢ and p arc defined to
be b and by respectively,

The statement that the set a, by s proportional to the set ap, by
means, by definition, that (113) hold. Therefore parallelism of
two lines is equivalent to the fact that the set of coefficients of
the variables in the equation of one line is proportional to the det
of coefficients of the variables in the cquation of the otherline.
The fact that the set @y, b; is proportional to the set ao, bml‘; dlso
written in the form

.".

(1]',1) iy by = Qg . 5 :
2\

It will now be proved that there are constants‘pland ¢ guch that

(113) are true if and only if O
9. N\

{(115) r=1 S
for the can. of (112). Wirst, if (113) @b true, then p > 0, and

o byl Ulpar pbod 1K gha | gla by 0

25 bg Pl bg "p‘t“ﬁg bz P ta bg
Therefore r = 1. Next, 4 = 1, then | %! b = 0, and b,

\ ag by

= aghy. If by = 0, 1\3 # and g are defined to be by and b, respec-
tively, then (11‘3) h[% If by = 0, then a; % 0. Also, then (113)
hold if p and_gsve defined to be ez and a;, respectively. This
cotupletes the{proof of the equivalence of (113) and (115). There-
fore parallelist of the lines (112) is equivalent to (115).

it m.lbrrow be proved that, if p and ¢ are constants such that
(113) hcld and if also

’(11.63 'pkl = qk‘?;

hian Ly and L are coincident. Tt has already been proved that
(113) imply pg # 0. Therefore the equation of L; can be written
in the form payx -+ phyy = pk; and hencee, by (113) and (116), in
the form gagzx + gboyy = gks. Since ¢ # 0, this gives the equation
of Lz. This proof also shows that (1 13) and

aLn Pk # ko
hold if and only if I; and L, are distinct paralicl lines.
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By the methods which were used in the proof of the equivalence
of {113} and (115} it can be proved that conditions (113) and (116)
are equivalent to r = 1 = 7, and that conditions (1 13} and (117)
are equivalent to r = 1, r, = 2, This eompletes the proof of the
last, two sentences in theorem 9.

Therefore two coincident lines illustrate geometrically theorem
6ifn=2=g¢gr=1=r, Two distinet parallel lines illustrate
geometrically theorem 6ifn =2 =4,+ = 1, r, = 2. )

Tt will now be proved that, if v = 2 = r,, then Ty and L it
sect in one and only one point. Ty theorem 6 and the hyQo\t‘mesis
that r = 2 = r, there is onc and only one solutien of pghations
(112}, Tf s and ¢ are the values of x and ¥ which congtithte this
solution, then the point (s, §) is on Ly and on Lo, and'it 1s the only
point on L; and on L. LV

Conversely, if Ly and Ty mtersect in a umgue point, there is
one and only one solution of (112). Heneéyr = 2 = 7, by the-
orem 6., ':z.\

This completes the proof of theoreid 9.

TueorREM 9. The rank of the goéﬁi{,:?jem matriz of fwe Hnear eguo-
tions in two variables 45 des-igﬂpé;éé& by r, and the rank of the aug-
mented matriz by ro.  The fwolines which are the loci of these equu-
tions indersect tn one ang® only one point if ond only if r = 2 = 1,
They are distinct parg%lpi tines if and ondy if r = 1, 7o = 2. They
are coinctdent if am\f\mdy tfr=1=r,

The a.m. of4he lines whose equations are

AN
O oz + by = by,
:"\.‘0
(1182'\ asx + bay = k,
:’\f ) age + bay = ky
\i‘q
\ aq bl k]

Since the c.m. has only two columns, therefore r £ 2. But‘ Ta
may be 3. If 7 = 2 and 7, = 3, then the taree lines have no point
in common, because, by theorern 6, equations (118} have no s_olu—
tion. Ilowever, there are two of equations (118) whose c.m, is of
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rank 2. If theorem 9 is applied to the three pairs of cquations in
(118}, it is found that

(i) the three lines intersect in three non-collincar distinet
points and determine a triangle; or

(i) two of the three lines intersect in one and only one point,
and the third line is paralle! to one of these two lines and
not coincident with it.

If r = 2 = r,, then the threc lines have one and only one point\
in common, by theorem 6. Two of these lines have a coefficiefit
matrix of rank 2, and determine a pencil of lines. The thivd line
is a line of this pencil. The third line may coincide "&fi}tﬁ one of
the two lines which determine the pencil. A 3

It r =1, r, = 2, then the three lines have no pom’t in common.
If theorem 9 is applied to the three pairs of equations in (1 18), it
15 found that AN

(iif) the three lines are parallel and ng'twa are coincident; or
(iv) two of the lines are distinet pdrallel lines and the third
line colncides with one of these ‘two lines.

Ifr =1 = 7, then the threp:.llrrfl?as are coincident, by theorem 9
applicd to the three pairs of lines,
This completes the prm{f of theorem 10,

Tuvorem 10. T, \'({mik of the coefficient matriz of three linear
equations in two vimgables s designated by r, and the rank of the
augmaented maﬁr;e.':t{’ Y r. Then v £ 2, and . < 3. The conditions
on 7 and o n'the following table are necessary and sufficient for the
correspording.geametric relation,:

..s'\ r Ta Geometric relation
N N 2 3 {1 or {i0)
£\ .
~\J 2 2 unigue ¢ommon point
\/ 1 2 (iil) or {iv)
1 1 coincident lines

If ¢ >3 in (110), then r £ 2 and r, < 3. Therefore the four
pairs of values of r and r, in theorem 10 arc the only possibilities.
Then corresponding geometric relations can be proved by the
methods which were used in the proof of theorem 10.

If {130) arc homogeneous equations, that s, f k=0, -,
ky = 0, then they illustrate (85) if » = 2. The lines all pass
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through the origin,  Theorem 7 ig illustrated if » = 1. Then r,
= 1, and all the lines are coincident. Sincen —# = 1, therefore
the geometrical interpretation of theorem 8 is that, if (s,£) is a
point on this line, then all points on this linc are obtained from
{ms, mt) by assigning all real values to m.

If »n = 3, equations (26) may be written more simply. Thus,
if 241, p, 75 are replaced by =, ¥, 2 respectively, and if a; is replaced
by @4, @i by by, @i by ¢;, then these equations become

iz + by -+ az = ki, .
asr + bgy + ez = Fﬂz, 4 ~<
(119) I ~\

ax + by + o2 = kg
It is to be noted that K9 N
(120) a; %0 or b #0 or o #8}1 =1 -, 9

Similarly at least one of ay, -+ v 1s not zcro, at least one of
bi, - -, b, is not zero, and at leadt bne of e1, -+, ¢ is not zero.
Tf &, y, z arc interpreted gns’fé(:tangular coordinates In space of
three dimensions, then the Tocus of the equation az + by -+ c2
=k, in which @ 5 0 gpdi O or ¢ # 0, is & plane. Tt is expl.a.incd
in solid analytic gobth stty percisely how the numbers ¢, b, ¢ 1n {:,h{:
equation of this/plane determine the direction of the line whmh
can be drawn, theough the origin perpendicalar to .1;136 plane“ This
Iine is call(sd;t-he sormal to the planc from the origin. Tt is also
explai ed”‘h‘ow a, b, ¢, k determine the distance from the origin jm
the p](lﬁ}t"of intersection of this normat and t]:}e.pla.ne‘ This dis-
tanesis the perpendicular distanee from the origin to the plz?-ne.
a\ By the use of these facts from solid analytic geometry it can

\Jle proved that the planes whose cquations are
ax + by + ez = ks
asz -+ boy + Co2 = k2,

p ¥

(121)

are parallel if and only if there are constants p and g such that

(122) pay = qas, ph = ¢ba, P01 = 2
and p=0 or ¢#0.
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The statemoent that the set aq, b, ¢, 18 proportional to the set
atg, ba, ¢» meuns, by definition, that (122) hold. Therefore paral-
lelism of two plancs is equivalent to the fact that the set of the
cocficicnts of the variables in the equation of one plane is propor-
tional to the set of the cocflicients of the variables in the equation
of the other plane. The fact that the set a;, by, ¢, is proportional
to the set ag, bg, ¢5 is also written in the form

(123) aribiie = (12:3}2:(32‘ N\

By the methods used in the proof of the equivalenee of, (I13)
and (115) it can he proved that {122) are true if and onlg™if -

Ny

(124) r=1 OY

for the c.m. of {121). Furthermore, if (122) ho]d‘,}nd if also
(125) pky = ghks, x.\\:

then the planes are at the same distarlc’(}hrom the origin, in the
same direction along the normal. If 22) hold and if

(126) Ph,?f}é‘%;

then the plancs are at different Elist-ances, or they are at the same
distance, measured in oppésite directions along the normal. There-
fore the planes are weludident if (122) and (125) hold, whereas
they are parallel and\&lstinct if (122) and (126) hold. Now (122)
and (125) are equivalent to r = 1 = r,. Also (122) and (120) are
equivalent to 5”1, r, = 2. This completes the proof of the last
two sentez}g{a:s\i'f theorem 11.

Therefare’ two coincident planes illustrate geometrically theo-
rem 6965 =3, ¢ =2, r =1 =, Two distinet parallel planes
ﬂll;st;l‘ﬂ{ie geomotrically theorem 6 ifn =3, ¢ =2, r =1, 7, = 2.

gi\’nw by (120) it is known that r = 1 or 2 in the c.m. of (121).

o, if r =2, then r, = 2 for (121). By theorem 6, if # = 3,
g = 2, there is a single infinity of solutions of (121) if and only if
r =2 =7, The plancs intersect in a line. This completes the
proof of theorem %1,

TaworeEM 11.  The rank of the coefficient matriz of two Hnear
equations in three variables is designated by r, and the rank of the
augmented malriz by rs.  The two planes which are the loci of these
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euations whtersect tn g straight Itne if ond only &f r = 2 = r,. They
are poratlel and distinet of and only if r =1, ra = 2. They are
cotncident if and only of r = 1 = 7,

All the possible relations between three planes will now be char-
aclerized by conditions on the rank r of the c.m., and the rank r,
of the a.m., of their equations

ax + by ez = ky
(127) agt -+ boy + caz = &y, £
a3t -+ b3?)" + Gy = k_q ("'}g

If r = 8 = r,, then, by theorem 6, there is a unique%é)lution of
equations (127). Then the plancs have one and bitly one point
in common and determine a trihedral angle. JID7r = 2, 7, = 3,
then, by theorem 6, the cquations have no sgtg”eion and the planes
have no point in common. However, thetearc two of the equa-
tions whose c¢.m. is of rank 2. If tl;eof-e'rh 11 is applied to the
three pairs of cquations in (127), Ltls Found that

(i) the three planes intersech inhthree parallel lines and form
a triangular prismaticgurface; or

(ii) two of the planes jyte\'sect in a line, and the third plane
is parallel to oneof these two planes,

It r = 2 = 7, thaw the equalions have & single infinity of solu-
tions, and the.fhpee planes have a line in common. The three
planes are_in~the pencil of planes determined by a pair of them.
If 7 = {,m= 2, then the plancs have no point in common. If
theorem1 is applied to the three pairs of equations in (127), it
is iglaiiﬁ' that

\(‘11{) the plancs are parallel and distinet; or

(iv) two of the planes are parallel and distinet, and the third

plane coincides with one of these two planes.

If r = 1 = r,, then the threc plancs are coincident. This com-
pletes the proofl of theorem 12.

The rank of the coefficient matriz of three linear
and the rank of the
in the following

TyHEOREM 12.
equations in three variables s designated by T,
augmented matriz by ra. The condilions on v ond re
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table are necessary and suflicient for the corresponding geomelric
relaiion:

F Ta Creometiie relation
3 3 nhique comumon point,
2 3 {i} or {10}

2 2 unique common line
1 2 (iii) or (iv)

1 1 coincident planes

By the preceding methods all posgsible relations between fo\ur
planes can be characterized by conditions on the rank Af the
c.m., and the rank r, of the am., of their equations. (I$%s to be
noted that r £3 and v, £ 4. Il r = 3 and r, —.g-l’ the plancs
have no point in common. However, there are hirec equations
whose e.m. is of rank 3. These three planeg ]m\e a unique point
in commen. I theorem 11 is applicd in tutaMo the fourth planc
and each of these three planes, it is found that. the four planes
intersect in four distinet points and £defh o tetrahedron, or the
fourth plane is parallel to one of the'tliree planes and has a unigque
point in common with the otherwo planes. The other possible
relations between = und », ..md the corresponding geometric rela-
tions of ihe planes ean bv dtﬁ’férm]nvd by these methods. These
sume methods can be used ¥ there are more than four planes.

H {119) are humogmlmus equalions, that is, if &, =0, ---,
kg = 0, then the .@ufstratv (85) if » = 3. The plancs all pass
through the ongm The georoctrie interpretation of theorem 7
with r = 2 ig & get of plancs which have in common & line through
the origin, Bv theorem 8, if (s, ¢, %) is a point on this line, then
all pomt&,&: this line are obtained from (ms, mi, mu) by assign-
ing alhneal values to m. "The geometric interpretation of theorem
7w &h r =118 a set of coincident plancs passing through the
ONf-',’ln By theorem 8, if (s, #;, w,) and (ss, &, up) are two points
o this plane, such thafs the line joining them does not pass through
the origin, then all points on this planc are obtained from (ms
+ masy, muty + mats, myuy + moug) by assigning all real values
to my and independently all real values to m,.

PROBLEMS
Find the geometric relations of the lines in the following systems.
L2 +3y = 7, 2. 4z + 3y =5,
x4 sy = —1, x — 2y = 6,
3r— y= 2 2z + y =1
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8. «—2y-—= 3 4. 2x 4+ = 4
Ir+ oy~ 5 r—dy =1
13z 4+ 9y = 19, hr+ 2= 17,
2+ y= 1 dx + 9y — 10

5. 3x+ 2y= 4, 6. z— 2y =1,
z— Ty= 1, 2 4 5y =3,
z -3y = 3, dr 4+ 18y =7,
Tr + 20y = 10, 25— 13y = 1.

. R
Tind the goometrie relations of the systems of planes whose equations are’\\
in the problems on p, 112 N



CHAPTER 8

COMPLEX NUMBERS AND TIHE FUNDAMENTAL
THEOREM OF ALGEBRA Q

1. Complex numbers. The real numbers 2 and 3 dctzgr{iﬁn‘g two
ordered pairs of numbers, These pairs are given theMnotations
(2,3) and (3,2). 1f a, b, ¢, d are real numbers, €h8 statement
that (@, b} = (¢, d) means that ¢ = cand b = d¢'Q

The symbol (2,3) + (5, ~4) means, by d"éﬁnit-ion, the pair
(2 + 35, 3 —4), that is, the pair (7, —1)\‘If a, b, ¢, d are real
numbers, then, by definition, AN

A\
(1) (@, &) + (e, d) = (e, b+ d).

One of the properties of real m}JﬁEurs iz that addition ig commu-
tative. This means that, if q, }{,3(3; d are real numbers, then ¢ 4 ¢
=c-taanddb L+ d=d —}-Jj.j’oThereI‘ore {fa+e,b+d) = (c+q,
d +b). Hence (a, b} e, d) = (¢, d) + {a, b}). Thercfore addi-
tion of pairs s cmmr}g.ctatz've. Again, onc of the propertics of real
numbers is that ad@tibn is asgociative. This means that, if @, b,
¢, d, ¢, f are regl numbers, then {a + el-+e=a+ e+ ¢ and
that [b+ & =06 + [d + 7. It follows that (ja + ¢] +&
b+ dl+ 02 (et c+e), b+ [d + 7). By the definition of
additioncofpuirs (@ + ¢, b+ d) + (¢, f) = (la + ¢] + e [b+dl
1) herefore, by (1, [ 1y 4 & D]+ (0, /) = (o + el +6
b KW+ /). Similarly (a, b)) + [(e, d) + (¢, )] = (@ + [c + €],
~B3[d + fD. Hence [(a, b) + (¢, d)] + (e, [} = (a, B) + [{e, d}
Nt (e, £)]. Therefore addition of pairs 18 associative. In the set of
real numbers zero has the property that, if @ and ¢ are resl num-
bers, then @ 40 =g, and 0 4 ¢ = ¢. Therefore the pair (0, 0)
has the property that (4, ) + (0, 0) = (a, b) and (0, 0) + (¢, &)
= (e, d}. Henee (0, 0 ig called #he zero patr or the zero in the sel
of all pairs.
The symbel (a, b)(c, d) is deflined by

(2) {@, b}e, d) = (ac — bd, ad -+ be).
236
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For example, (2, 8)(5, —4) = (10 +12, -8 +15) = (22, 7).
Now multiplication of real numbers is sssociative and cominuta-
tve.  Also multiplication is distributive with respect to addition.
This means that, if a, b, ¢ arc real numbers, then a(b + ¢) =
ab 4 ae.  All these properties of real numbers suffice to prove
that mulitplication of pairs 1s associative, commulative, and dis-
fribulive with respect to addition. Bubtraction, and division exeept
by the zero pair, are defined as they are for real numbers. ~
An important property of real numbers is that, if p and g dwe
rea] numboers such that pg¢ = 0, then either p = 0 or ¢ = Q.\Xhe
analogous proporty of pairg is that, if (o, b){e, d) = (0,;:0), then
cither {a, b) = (0, 0) or {¢,d) = (0, 0). This fact canibe proved
by using properties of the set of real numbers, Oﬁher properties
of number pairs can be proved from the properteis,bf real numbers.
The symbol § will designate the set of resl fumbers, and the
symbol C the set of pairs of real numbgne\\'These notations are
used to suggest that real numbers arelsifiple and that number
pairs are somewhat complicated. 1180 be noted especially that
the rules which ure used in manigylating these number pairs are
either definitions or laws of opetation which are proved by the use
of these definitions and prqpéfties of the real number system, and
that these laws are preciscly the same laws as those used in oper-
ating with real nungbtéfs. These number pairs are also called

nuimbers. L™ o
An illugtratiobnaf*a linear equation involving number pairs 18

@) 2T 5,960y = (—23,19,

By (2) 60 verified that (—3, 4) is a solution of (3). An illustra-
tlon g "‘c’;uadmtic equation involving number pairs iz (4, 1){x, )
A2 (2, ) - (33, —4) = (0,0). By (2, (1), and the
Bys of operation for C, it is verified that the pairs (2, .3) and
X —1, 2) satisfy this equation. A quadratic equation to which ref-
erence will be made later is

4 (1, O, 9)° + (=4, O, ) + (13,0) = 0, 0).

The pairs (2, 3) and (2, —3) satisly this equation, .

There is an important subset T of the set ¢ of pairs. By
definition 7' is the set of all pairs (g, 0). Now the real IIUI'.H]JE:I'
b in S determines the pair (b, 0) in 7. Also the pa‘ir {d,0)in T
is determined by the real number d in 8. The notation b <> (b, 0)
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is used to express these two facts. It is said that b < (b, 0) estab-
lishes o one-to-one eorrespondence of the set 8 and the set T.

If ¢ and ¢ are in S, then ¢ + ¢ s in 8. Also a <> (g, 0), ¢
e, D), and ¢ + e« (a4 ¢, 0). However, by (1), (@ 4-¢,0) =
{a,0) + (¢, 0). This implies that, if ¢ and ¢ are clements in 8,
then the clement in T which is obtained by first adding e and ¢
in S and next finding the corresponding element in T is the same
as the element in 7" which is obtained by first (inding the corre-
sponding elements (@, 4) and (¢, 0) in T and next adding thése
elements in ', This fact is also cxpressed in symbels 1{3»\

(5) a+ce(a 0) + (¢ 0). A

This is an important properly of the correspon,d{"ﬂ;ce.bH (b, 0).
This property is also expressed by the Statcm@ht\ that the corre-
spondence b <> (b, 0) 3 preserved under additpiny” In the same way
it is proved that PN

(6) ac > (a, 0) @{O):

This property is also expressed hy.tﬁe statement that the corre-
sponddence b <> (b, 0) 15 preserved wnder multiplication.

The statemcent that T is ‘z':ér)ﬂforphic to S means that there is a
one-fo-one correspondence 9f the sct S to the sot 7" and that this
correspondence is presarved under addition and multiplication.

Another notationo\fuf' number pairs will now he explained. If
a and b are r.caljﬁsmburs, the symbol a + {7 is defined by

(7) & a+bU = (q, ).

It is to he’hoted especially that the 4+ on the left-hand side of (7)
is notthe) & used between real numbers and it is not the + used
bCii\ﬂS’é‘l number pairs. The + and { on the left-hand side of
(HForm a symbol to ordor the real numbers a and b in a way

“amilogous to that in which the symbol ( , ) orders them. In the
new notation (1) becomes

(8) [e + U]+ [c + dU] = [a + ¢] + [b + d]U.

1t is to be noted especially that the right-hand side of (8) is pre-
cisely the result which would have been obtained if the left-hand
side had been rewritten by the rules of ordinary algebra. In the
new notation (2) becomes

(9) la + bUle + dU] = [ac — bd] + [ad + bc]U.
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If the lelt-hand side of (9) were rewritten by the rules of ordinary
algchra, the Tesult would be ae + bdU® + {ud + be)U. There-
fore the right-hand side can be obtained if the lefi-hand side is
rewritten by the rules of ordinary algebra and the condition

(10) U= —1

is used. The importance of this new notation for number pairs
is the fact that addition and multiplication are performed us i\
ordinary algebra and results are simplified by {10). N

If the symbol U is replaced by the gymbol 4, then (10){ @]‘;Qﬂd
(9) become respectively « \

1) 2= -1, ,\;f
{12) [a +bi] +[e+dil =la+c+ b +':ﬂ£,
(13) [a + bille + di] = lac —fd\..m} Tad + belt.

These are the familiar rules for addition and multiplieation of
complex numbers. This comp!gté‘s the proof that eomplex num-
bers are ordered pairs of real nitmbers.  The subsel T of the set C of
ordered pairs is isomorphicte Ihe set S of real numbers. In this
sense it may be said thog the real nurbers are a subset of the
complex numbers. It;Ts o be noted especially that number pairy
4are no less substa’x(bizﬂ and no more visionary than the numbers
which are pairedy Therefore it is inadvisable that these number
pairs he cal’leﬁ. imaginary numbers, as they have been.

2. The;fﬁ%;mental theorem of algebra. If the notation
apl 2 = (1)

”\} i;;v,\'ﬁsed, then (4) becomes
(15) (1,022 + (=4, 0z + (13, 0) = (0, 0).

By (5) and (6) cach step I the usual process of completing the
3 = 0 can also he taken to solve (15).

Thus it is found that [(1, 0)z — (2, 0) — (0, HNQA, 0)z — (2,0 +
{0, 3)] = (0, 0). Hence z = (2,3)or & = (2, —3). In the same
way it follows that the familizr gquadratie for:mula of algebra 18
valid in solving equations involving number pairs.

square to solve 22 — 4z + 1
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The fundamental theorem of algebra states that there is at least
one number (¢, d) which satisfies the polynomial equation
(16) (aﬂs bD) {3’3, y)ﬂ -+ (alr bl) (‘tr ?})n_l +- -
+ (Gn—1, bn—l)(xy y) + (a., ba) = {0, 0).
In particular, there is at least one number (¢, b) which satisfies
the polynomial equation A
A7) (a0, Oz, )" + (a1, O, y)" 4 - - A
+ (an1, O, ) + (2, 05, 0).
By (5) and (6) there is at least one complex numb“e:'\’w}v:hich gabis-
fies the polynomial equation ,\\,
O
(18) a@" + 012" - g,z + gy

in which the coefficients are real nl.lmberss'.\\’

Proofs of the fundamental theorem ofalgehra are given in the
references cited at the end of this bt’):gk‘.' These proofs use prop-
erties of the set of real numbcrs,,‘ﬁr,operties of the set of complex
numbeors, and propertics of fllng}f‘i{iﬁs of a complex variuble, This
theorem will not be proved inthis book.

)
¢ ’\\./
N
L >
> N/
PN\
"i";



CHAPTER 9
SYMMETRIC FUNCTIONS N\

1. Relation between the coefficients and the roots of a po!yﬁc;hl}al
equation. Tf 2% 4 byz + by = 0 is an equation whose,roets are
7y and ry, then, by theorem 15 of chapter 3, N

(1) P4 bhr b= - Tz)\:\.\'

Also, it is verified by performing the i.ndica.QaJd operations that
)

(2} &2 — (ry +re)e + e = (%..\?’1)(27 — 73).

Henee {x — r)(x — o) 18 the f&ctpfﬁ':d‘ Torm of each of the func-
tions 2 + bz + by and 27 — @B o) + 11ra This factored
form may be used, as in sect-i{:)f;fQ of chapler 1, to compute fune-
tional values of these funckigns. Therefore, if s is any complex
number, then s + bysiabe = §¢ — (r) 4 ro)s 4 rre. Let 82
and sz be complex nu,r{ﬂ’)e\s such that s, sg, 53 are all distinet. Then

similar equations h’blﬂ’fbr sy and s;. By theorem 7 of chapter 3 it
follows that ()

:.}} —by =1 1o
@  of .
ﬁ:g‘s\'ﬁx,“i'f r1, T, 73 are the roots of
~\(’£, 2+ br? b+ =0,

\ it is proved in the same way thot
—by =711 T2 T
(5) by = riry + rivs T 127,
—by = 1473
In the same way it is proved fhat, if

(6) 2t & byp? - ber® + bz by =
241

|
="
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is an equation whose roots are four complex numbers ry, ry, 13, 74,
then
—by=rtrat+rntry
by = rire + ryva + ity + Tars -+ rorg + rarg,

(0

by = ryrgrs + rivers - rirgre + rorary,
by = ryrarsty.

A notation will now be introduced by which (3,), (5;), and L&\
can be expressed in a single slutement. If # is a positive integer
and ry, - - -, r, are complex numbers, then 8 is defined b ™

(8) SI = -+ n. 'x:"‘ N

It is especially to be noted that it i3 not assumed. that Fi, v, T
are all distinet. The subseript 1 on 8 is used be&m\%v s S S
is lineat in 7y, -+« 7,. Later, when a sum of fubre complex num-
bers is to be used simultanecusly with ?”J.*‘P\ «+ r,, the symbol
T will be used to designate this second, s, instead of indicating
by a second subseript on S the numbeéPf summands to which the

symbol refers. By (8) the e,qudt’lpn“ 3
) S &SA%p,

becomes (3,) if n = 2, (5l W = 3, (T iln =4,

A notation will now be\mtrntlucod by which (3,), (54), and {72)
can he expressed in a\ﬁmgl(‘ statement. If » is an integer which
is greater than 2 azﬁ if vy, +++, 1y 5 & set of complex numbers,
then ryry = ?"2?"1 “Howevcer, there are sets of numbers for which
rire # TP, Hencc for all sets of complex numbers 7y, - -+, 7y the
products rk?"g\‘md riry are said to be distinet, and the products
rire and\per; are said to be not distinet. Therefore the distine
p?‘odur';fe of the numbers vy, - -, r,, taken two at a time are r4ry, =
rlrn) r2?3, Tty Talhy oy Taqr.  The sum of these distinet prod-

\uclq is designated by Ss. 'Thercfore

(10) Sz =rirp +- 4 riry 4 rorg oo b rorn o FriTne

If n = 2, then the sum on the right-hand side of (10) is interpreted
to contain merely the one term ryr,. Hence S, is defined if n s
an integer which is greater than 1. By this definition the equation

(11) gy = by
becomes (32) if v = 2, (52) if n = 3, (7)) il » = 4.
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Similazly, if # is an integer which is greater than 3, and if
r1, ---, Iy 18 & set of complex numbers, then, by definition, rirarg
and rirery are distinet products, but rrers and ryryry are not dis-
iinct products. If n = 4, the distinct products of ry, re, 75, 74
taken three at a time are ryrgry, ryrory, vi7ara, Torsra. 1f n = 3,
then there is only one product of vy, 75, r3 taken throe at a time,
namely, rrors. In general, if # is an integer which is greater than
2, then Sz is, by definition, the sum of the distinet products of
r1, - - -, 7y taken three at a time. By this definition the equation

(12) 83 = —bs O
becomes (3z) il n = 3, (Ta) if n = 4. G\

Tn generul, if & and n are positive integers sich that, 1k < n,
and if 74, - -+, r are 1 complex numbers, then a product of 1y, o0,
7o taken b ot o time iz, by definition, a product formied from & of
these numbers with all the subscripts differept,» Twe such prod-
ucts are distinel, by definition, if and only i “file subscripts of the
gecond product do not form a re&rrange,rr{én of the subscripts of

the first product. Then, by definition,’ "/
(13) S; s the sum of the distiquﬂijfodue_ts of

N ¥y, - --, r, taken k at a time.

If £ = 1, then (13) is i.nit,e:l"ijreted to mean (8). By this definition
the equation \\ w

N\

(i4) Se=bs
beecomes (74),%:?1? = 4. Also
(15) \:"\." S = (—1)%,

bucum’gﬁ;}g), (1), (12), 0 if £ =1,2,3, 4 respeetively. BSince
t-hi;s'ﬁj‘qﬁation has been proved if n = 2, 3, 4 and 1 £ k £ n, there-
\@ne" theorem 1 has been verified for n = 2,3, 4.
Trmores 1. If n s an tnleger which s greater than I, i r, -+,

1y, are complex numbers, if

(16) & A by A b F 0 =0

is an equation whose leading coefficient is 1 and whose rools are T,
-, T, atd O 8y 18 defined by (18}, then

(17) S, = (=, 1=2ksmn
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Theorem 1 will be proved by mathematical induction. The
lemma for the induction remains to be proved. This lemma states
that, if ng is & value of n for which the theorem is lrue, then
ng + 1is a value of # for which the theorem is true. 'This lemma,
will now be proved. It is given that ry, .-, Tug4+1 Arve complex
numbers and that
(18) 2 di@® ot dyr + dyy = 0
is an equation whose roots are ry, - - -, Tuy41- DBy definition,

(19) T} is the sum of the distinet products of R \J
71, "0 Tyt taken jat a time, | < AR + 1.
It is to be proved that \ .
AN
(20) Ti=(—1Yd;, 1<j£n,LW

By definition 8, ig the sum in (13) \\rlthQr, replaced by ng. If
the expanded form of (x — #,) - - {ix o ?5,‘) is given the notation
™ 4 o™t 4 Cng— i+ Cpypy theu’

@) @E—r)-z—r,)= :L’f:”.’j!» clx"” L o P I R
Now, by the hypothesis of tlml‘:?rﬁma, for the induction,
(22) Sp = (& ijﬁck, 1 2k = .
Therefore ) "‘\
23) (& —mr)- (} = Fug)

== ST e (SIS, L (= 1)

The resu}t\ mulhphmtmﬂ of both sides of (23) by z — ruyr1
will naf\be’ exhibited. If the operations indicated on the right-
hand gide of this result are performed, and if all terms involving
lﬂ&apow ers of x are combined, the result is

\(2’1) (—r) - (& — Faad (& — g 11)
= 2™t (=8 — ry 2™ 4 (S, + St i)z
e (=178 o (— 19718, (— eyl
+ (= D™8(— Tt 1)-
By the definitions of 8, und 7", it follows that
(25) St +rpp = 10
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Again; by the definitions
(26) Suing+r = Tagir.

On the right-hand side of (24) all the terms except the first,
second, and last can be written simultaneously by

(27) (=1)%0Se + Spary, 4 2™t 5

It will now bhe proved that

(28) S+ S e = Th, 2=k =n P
By the definitions of 8s, 8;, and T it is found that X O >
(29) S5 4 Syrars = Ta.

£ &
In general, by (13), if & > 1 then cach term in Sk_{’i\s a product
of & — 1 factors with distinct subscripts from r4,\\Y, +,,. There-
fore each term in the cxpanded form of S; %7 is a product of
k distinet factors from ry, - -, 74,41 Kherefore, by (19), each
term in the expanded form of S;_i7r,,+{I34% term in 7). Again,
by (13) and (19}, cach term in S is"z.zfterm in T;. Moreover the
terms in S, and the terms in the gspanded form of S;_iry.4y are
all distinct. Therefore each tertin Sy + Sp_i7uq1 15 & term in
1% The converse of this gtatement will now be proved. Each
term in 7T either involvesas, ;. or it does not involve r, ;. H
it does not involve 7. ﬂ,’this term in T is a term in S If it
docs involve 7,4, thig term in P is a term in the expanded form
of Sp_17y,11. Ald@the terms in T} are all distinet. This com-
pletes the propf'of (28). .
Substitl{.itm‘nf (25), (26), and (28) in (24) gives

(30) (q;j_ r) - e (_5 — :‘..MJ’_I) = gt _ T;a:”"
QY + T b (DT (1
By the hypothesis that ry, « - -, fye41 1€ the roots of (1.8) and by
theorem 15 of chapter 3 it follows that the left-hand side of (18)
is identically equal to the right-hand side of (30). Theref(.:re the
coefficients of like powers of z are equal, and (20) hold. This ¢om-
pletes the proof of theorem 1. o

It is to be noted especially that the leading coefficient in (16)

is 1,
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2. The fundamental theorem on symmetric functions. In (13)
there appear certain simple expressions involving the roots ry,
., rp of an equation. These same expressions in independent
variables 2, - - -, T, are designated by £y, ---, E,. Thus, in the
definition preceding (13), ry, ++-, ¥, are replaced by aq, - - -, 2,
Also, if & is an integer such that 1 £ %k = »n, then, by definition,
Fy is the sum of the distinet products of x, ++-, , taken £ at a
titne. Therefore, in gymbols, if » > 2 then A\

By = 4+ 2y
Ey=maes o F o +xors +-0- -fz-»"?n

o N2
oA\

(3 1) + + LT B o ’..: A 3
b m\\.
a\,/
E, =xz - 15 4O
If » = 2, then B, = 2; + 2, and F‘g = 1yx5. Also, by definition,
(32) Erley, « 371;) = L’k k=1,

In these symbols, and laferw»*hpn dots oceur i the symbol of a
functicn, the dots mdl(,at‘e that. the subseripts of the omitted vari-
ables are in natural

An important, Bﬁj}erty of each of the functions (31) will now
be explained. Ris property will be proved in detail if » =4
and the funci;?on is By, By (32) and (31), if » = 4 then

N S
(33) ,'\ Ey(zy, zg, 23, 24) = 31 + 22 + @3 + 22

Thexdlore £1(zs, 71, 23, 24) = 22 + @ + 3 + 4. Also addition
is éomimutative. Therefore the function B (s, #q, &3, z4) is iden-

',,\fi,tfally cqual to the function By (xy, o3, xs, x4); that is,

~\.
\:

(34) E1(xz, @1, 3, €4) = Ey.
In the same way it is proved that

{35) B (xg, 72, 21, 24) = By,

(36) B\ (x4, 29, 33, 1) = By,

(37) E\(x1, 33, 22, 1) = By,

(38) Ey{(w1, @4, €3, 1) = Ky,

(39) By (21, 23, 24, 203) = Ey.
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Identities (31) fo (89) arc summarized in the statement that 7
s an illustration of a function f{x;, .-, z;) which has the prop-
erty that each of the funetions of z;, - -+, =4 which is ebtained by
interchanging two of x1, - --, x4 In f{ay, - -, 24) I8 identically equal
tof(xla Ty xé)-

It will now be proved that

(4:0) ET. (3’33, X1, T4, 332) = El.

Since E(zi, 9, Ty, 24} 18 a very simple function of z;, -+, 2y,
direct verifieation is the casiest method of proving (40). Anotlw’c:\
method of proving (40) will now be explained, beeause the pfogf
by this method would be easy even if the funetion \x'el'e,c.i};ﬁbli-
cated.  This method is also important because it canol')’r_zfuséd to
prove for any function many identities analogons $a\(10), after
identities analogous to (34) ,---, (39) huve beenyroved for this
function. Now, if 21, - -, 24 are arbilrary Vm:ia&a]ﬁs, by (39) it is

* true that (21, 25, 24, 23) = F1(21, 22, %3, 24). { Replacement of 2y,
Za, 23, 24 DY %3, T1, Tz, 24 vespectively shu:\v.ﬁ'_{.t’ua.t

(41) By (za, T1; T4, Tp) = E¢(3T~3, 1, Ty, Ta).

Similarly, by (87), Bila, 2a, 22, A= E1(z1, 29, 23, 24). Replace-
ment of 21, 2y, 2, 24 DY T3, €1, &9 24 respoctively shows that

(12) Fr(zg, €2, 2grids) = E1(23, 21, T2 24).

Similarly, by (35), £ 0 22, 21, 24) = Fale, 23, 7, 25). Replace-

ment of 2y, 7, 73, #a 0¥ Zz, Ta, T1, T4 regpectively shows that
NS

(43) B, 72, 75, 1) = F1(@s, 82, 11, 24)-

~G
Then (10) fgllows from (413, (42}, (43).

In gep’e?ral, by this method it is a corollary of (34} to (39} that,
if ?:1’5.2’53?4‘]8 an arrangement of 1, 2, 3, 4, then

\‘ - )
(‘N\) / El(xiu Tigy Ligs xia) = K.

Thus, as a corollary of the property of Er(x1, T2, T3, Ta) which was
stated as a summary of (34) to (39), it follows that £, is an illus-
tration of a funetion f(zy, - - -, #4) which has a second property,
namely, that cach of the funetions of 21, -+ -, %4 which is cbtained
by rearranging z, ---, 1 in f(@1, @2, Ta x4} is identically C(Ii:la-l
to f(z1, zo, 3, 24). The statement that f is & symmetrie funetion
of %y, Ta, &3, ¥4 means, by definition, that f has the sccond property.
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Conversely, if a function has the second property, then it has
the first property.

Tt can he verified that Eg, Ej, and Ky are symmotrie funetions
of &y, - -+, Za

If »n is an arbitrary positive integer, the statement that
fley, -+, %) is a symmetric Junction of @y, -+, ©a MCANS, by
definition, that each function of 1, ***) % which is obtained by
rearranging the variables 2y, ++«, Tn i f (21, = -, &a) s identica
equal to f(z1, -+ -, T,). This is equivalent to the statement ‘that
each function of xy, - -+, @, which is obtained by interghahging
two of Ty, - -, Zn in f(#1, -+, ©a) 13 identically cqual 66 filrs, -+,
x,). The functions Ey, - - -, Epare called the eleme-ngai‘y symmetric
functions of Ty, * -, Tne 4D

The function 2,2 4 z% + 232 + 247 i & S}"[ﬁI}I\IE‘,\triC {unction of
1, T, T3, T4. The notation Zr? is used to\designate this func-
tion. If n = 3, then Zag? means ,° —Jvitx\zz + a3, Tf there are
n variables, then Zz,% means 217 4y ock 2, This function bty
is called a S-function. If n = 3,(th& function z:%rs -+ %y 4
w52, + xo2Ta + gl + w3 Ty IS arother illustration of a S-fune-
tion. It is designated by Zaidws. If n = 2, then T ’xy means
x 22 + x7w1. In gcnerathﬁi—functian is the sum of all the dis-
tinct terms that can bedermed from the exhibited term by replac-
ing the list of subscripts in that term with a list of distinct integers
from 1, - -, n. Whetefore a Z-function is a symmetric funetion
nx, -, :t:,,%:.‘l“:illally, it is to be noted that K = 2z, Ea =
XXy v N 'nil = Zaqta 0 X1, By = Zxp - 00 L

If b is independent of @y, - -+, z,, and if each of ky, +-+, kn 152
positiQi}ﬁteger, then b, - - 2, is, by definition, a pol}-'m)miﬂ.l
in g\ -, @, Which consists of just one ferm. "Lhe degree of this
t%rm n zy, v, Tnis ky 4o+ &y In gencral, by definition, @

'«ipoly?’%omial i X1, ', Ty 18 2 single term of this type or a suit of

a finite number of zuch terms. The degree of the polynomial
%1, -+, Tn is the largest degree ky -+ ---+ ks among all those
terms in the polynomial for which the coefficient is not zero, The
stutement that a pelynomiol in 2y, -+, z, 18 homogeneous in
21, + - -, Tn means, by definition, that the degree &y +- -+ Fan s
the S;ZI,T-[IG for all the terms in the polynomial, Thus, 12 + T
+3:r:3 s 8 homo%c{:mous polynomial of degree 2 in z, €2, €3 and
2% + ;%5 + 2a* is a homogeneous polynomial of degree 3 in 21
9, ¥3. Again, 2> + 172 + 23 is a polynomial of degree 2 in
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1, @, 23, but it is not homogencous in Ty, Tz 3. Again, Ty, !
is symmetric inzy, - -+, 2, but it is not a polyromial in 2y, - -, x,.

The fundamental theorem on symmetric funetions is a theorem
about symmetric polynomials in ®1, ***, Tn. This theorem will
now be illustrated, using the polynomial g which is defined by

(45} g(wr. @z, 25) = 3257 4 32,% + 3x5° + 51y + Sry2s - 5Ts5.

First, by (31) with n = 3, N\

(46) El =% + i + Xa, Eg = Ik + Ty + Fala, E3 = .."31"9';'3?3.
7'\

Next, by performing the indicated operations and simplifying the
result, it is verified that 3(z, + Ty + x5)° — {1y -f—il;c; + @p13)
= g{21, z3, ®3). This is precisely the meaning Qi"\ﬂlb statement,
that g(zy, 23, z3) is equal to 3F,% — 7, identiedlly in x,, z,, 5.
This identity is indicated by RS

(47) Q’(ﬁ'}l, Fa, xg) = 3E1%':\E2

In general, if f(z1, -+, x,) is a polynomial in ;, -+, z,, and
i F(Ey, -+, Ey) is a polynomialdmEy, - -, K, then f(zy, -+, z.)
= F(Ey, -+, E,) means, by(definition, that the polynomial in
&1, * -, T, Which is obtainedrom F(, -- -, E,) by substitution
from (31), equals f(z,, > %) identically in @, -- -, 2,. There-
fore (47) illustrutes tHab part of the fundamental thecrem which
states that, if f{z, \-\-, ®n} is 8 symmetrie polynomial in zy, - -,
Zn, then there isf polynomial F{F,, ---, B,) in £y, -+, E, such
that flz1, - -0 = F(Ey, -+, E.).

The otheﬁﬁpar’s of the fundamental theorem is ilustrated more
sat-isfap{{)}}ﬁ? using the polynomial f which is defined by

(48 Y (21, 29, 25) = (o1 *02® + 31%25% + 22%25%)
"
\M; ™ o by Zraws + @17 4 312gzs?).

I H(Ey, E, Fs b, ¢) designates the polynomial ¢EzZ + (b —
2C)E1E3 il E‘I, Eg, Eg, b, c, th(m, by (‘ﬂ)), II(El, Eg, E3, b, C) be-
- comes a polynomisl k(zy, 23, 23, b, €) In 1, gy Lay b, e By per-
forming the indicated operations and combining terms it is veri-
fied that h(zy, xs, 23, b, ¢) equals the right-band F'ildl?, of {48) iden-
tically in =, s, 3. This is preciscly the meaning of‘the §tate-
ment that f(z;, 2, ¥s) is equal to cB® + (b — 2c)E; By identically
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in z;, 3, ¥3. This identity is indicated hy
(49) flxy, 22, 25) = eBa® + (b — 20)F1 Ey.

In gencral, if f is a polynomial in @y, -« -, 2, and if F is a poly-
nomial in K\, -- -, F, and the coefficients of f, then the statement
that f equals F identically n 1, + - -, £, means, by definition, that
the polynomial in @1, -+, #, and the coefficicnts of f, which is
obtained by substitution from (31) in F, equals f idcntically in
#1, -+, Zp. In motation this statement is expressed hy f = £
Therefore (19) illustrates both parts of the fundamental them{em
that, if fis a symmvtrlc po]ynomml in @, +--, &y, then there 18
a polynomial I in Ky, ---, B, and the cocfficients of f A v?ith inte-
gral cocficients, such that f F.

The syminetric polynomial ¢(e;? -+ 257 + 257 —j,—s{é‘rl + @2 + x3)
is not homogeneous in #y, o, 3. [lowever, dbJds/the sum of two
polynomials each of which is homogeneougsand symmetric in 1,
¥, T3, because it is the sum ¢Zz¢2 + b2 (In general, a symmet-
ric polynemial in @, ---, o, which Nsonot homogeneous in 1,

<+, Tn, 18 a sum of polynomials m By, + -, &, cach of which is
symmetric and homogeneous ng :cl, -+, x,. Therefore, i the
fundamental theorem is proved o all polynomiuls which are sym-
metric and homogencous inNey, ---, 2, 1t will follow that the
fundamental theorem isdile for all po]ynomlals' whuh are sym-
mefric In xy, -, Zaul %‘nr example, since c(xl + z02 + 3%} =
cF? — 2cEy and ?Ml + x5 + x5) = bFEy, the non-homogencous
symmetric polynomml ey 4+ bZx, isequal to eE® — 2¢E, + bEL
identically in Wiy zo, 3.

The polz'\emmi Flzq, 23, x3), which is defined to be

4,3
&251 Totwa - 21 ems? -k 21 %%02at 4 2wl ozt

\(:)Q) ’ + o2y’ 3334) + 20(331 Iy 373z + -61252 -La + 3221'34)
V ) + d(zP v 2" + wPr2725 + i Pwt s,

is symmetric in &y, x2, #3. It can also be written

(51) o eZxtasrs 4 2Zxtrgtag? + d¥x Putest

The polynomial in By, Bs, Fs, e, d, to which f(z, za, z3) 8 equat
identically in &1, s, %5, will now be found by a method which
illustrates the method of proof of the fundamental theorem for
symmetric homogenecus polynomials in %4, -« -, T
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As a first step in finding this polynomial in B 1, Fa, X5, ¢, d, (50)
is written with its terms in the order

4. 3, 4 ) :
cx1 22 ws + 2ew my es® + extearg® 4 o Pryta
3,3, 2 : :
(r2) + drier’rg” 4+ darn’n® 4+ e dugr,t - I
. 2.8 3 2, 2 :
-+ [)f:r]_ ratxs” + 2C$12:62 x‘g‘i + cx1z24a:3“ 4 r:xl:rngg“.

The rule for ordering the terms will now be explained. First, the
coeflicients are disregarded in determining this order. Next, the

term in which z,"2."2," is a factor precedes the term in which
@1%125%05" ig a factor if and only if one of (53) holds: ™

i) kb >k, \\
(‘53) (11) }l-l = :Iﬂl, and hg > kg, 4

GiD) ko= Fy, by = s, and<:h}§ kg,

W

This condition, thut one and only one {\53) holds, is equivalent
to the condition that the first of thewdifferences by — &y, by — ks,
hg — kg which is not zero is indeed pesitive. It should be verified
that the terms in (62) have begiordered by this rule,

The term ez *eo®zs in (52), Which precedes every other term in
(52} when the ferms aremg'\i"derecl by the rule which bas just been
cxplained, is called therhighest term in (52). Also, when one term
precedes another thn\lm (52), then the former term is said to be
higher than the Jattér term.

The second;s;fkp in finding the polynomial in £y, By, By, ¢, d
which is id@ﬁﬁfaally equal to the polynomial (51) involves a new
relationghip/between homogeneous symmetric polynomials, This
relutionship will now be explained. Thus, if g{zy, 2o, x3) and
« (351{‘@, a3} are two polynomials which are homoger.wous and
&Viifmetric in 2, 7o, 2s, then the statement that g is higher than
}}‘ means, by definition, either that the degree of ¢ is greater than
the degree of @, or that the degree of ¢ is cqual to Lh_e degree of
& and that the highest term in g is bigher than the highest term
in G. This last condition means that, if the degrees. of g and &
are cqual, and if az; ™™™ and b "'z.%2;" are the hl.ghest terms
of ¢ and (} respectively, then ¢ is higher thal"[ G. if and only
if the first one of py — g1, P2 — G2, D5 — @ which is not zero i3
positive,
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The rule (53) for ordering the terms in a symmetric homo-
geneous polynomial in 2y, %, 23 can be extended to give a rule
for ordering the terms in a symmetric homogeneous polynomial
in x, - -, Zn. Thus, the term in which @™ -+ 2™ s a factor

“precedes the term in which g™ -z, is a factor if and only if

(54) the first one of the differences iy — k1, -+ -, b — kin
which is not zero is positive,

Also, by definition, the highest term in a symmetric homogegte\ous
polynomial in 2y, -, ¥, i¢ the term which precedes cvery other
term when the terms have boen ordered by this rule. Agaifi, when
one term precedes another term, then the former tefm is said to
be higher than the latter term. Finally, if ¢ and{Gare two gym-
metrie homogeneous polynomials in xy, -} way then the state-
ment that ¢ is higher than ¢ means, by definition, either that the
degree of g is greater than the degree qK’G*, or that their degrees
are equal and that, if the highest tephin ¢ is aw™ --- =, and
the highest torm in G is be,™ -« - - x,vfif,'blien the Grst one of py — g1,
«++, Pn — ¢» which s not zero is(pesitive.

It will now be proved thzg@if’ By o+ 2™ iz the highest
term in a polynomial whichbis homogeneous and symmetric in

&

Ty, + -+, Ty, then \
.imx _
(65) Chzhz zh

This will he dol{e.by proving that if by < hs then there is a conira-
diction, and\a:lso that, if j is an integer such that 1 < j < n and
hy = hg =e&* = h; < hjy1, then there iy a contradiction. By the

deﬁni‘g@a of a symmetrie function, if bry e g™ . - - £, i 8 term

in aygymmetrie funetion, then bay™e®s™ -+ 2, is also a term
i this function. If Ay < kg, then the Jafter term is higher than
\thé former term. Therefore, if briz™as™ - -+ 2,™ is the highest
term in this function and if A, < hg, then there is a contradiction.
Similarly there is a contradietion if ky = hy =+« = ky < Ajp1-
The property stated in (85) is illustrated if » = 3 by the first term
in (52).

The highest term in Zxy is z;. The highest term in Zz;2s 18
225, I n =3, it can be verified that the highest ferm in
(Zx1) (Zryxe} s the product (x)(zize) of the highest term & in
¥z, and the highest term z;25 in Zzy2,. Thus the following lemma
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has been verified if » = 3 and the symmetric polynomials are the
particular functions Zz; and Xz,

Temma 1. If f and g are symmetric homogeneous polynomials in
F1, vy Ta, then fg 4s o symmelric homogeneous polynomial in
X1, * vy Ta, and the highest ferm in fg is the product of the highest
term in f and the highest term n g,

Lemma 1 will now be proved. First, fg is 8 symmetric honios
geneous polynomial in z, - -, ,, by the definitions and the ky-
potheses in the lemma. Next, if 2,™ --- z,™ is a factor of term
in fg, then there is a product 2, -+ £, which is a, faetor of a
term in f, and a product ;" +++ 2, which is a factér™of a term in
g, such that my = & + &, -+, ms = s, + £,. (AGhID, it will be
proved that, il bz;™ ... 2,™ is the highegt¥etm in f and if
exy® -+ 1,™ is the highest term in g, then Gpg” % ... g, Mt g
a term in fg. This will he done by sho@idg that the product of
be® - 2,7 in f and ex,™ - 228 the only product of a
term in f and a term in g which hag ™9 ... 2,72 g 4 factor.
Thus, if ;" - -+ 2, from f and &% - z,” from g are such that
ur o =p1+ g, ooy Ua R = Pu Tt @ then (g —wi) +
(r — o) =0, -+, Ba ) + (g — ) = 0. In the first of
these equations eitherzsy — 4 >0 or p; — wy = 0, since bz,™

- &, ig the high t\ierm of f. If py — w; > 0, then it follows
that ¢1 — o < Ox\Phis contradicts the hypothesis that ¢z, ---
#,™ is the highegt term in g. Therefore py —u; = 0, and g1 — 0y
= 0. Thug/{#dm the first equation it follm&.'s th:smt pL = u; and
§1 = vy. \’Shniiarly from the second equation it follows that
P2 = wnand g, = va. Repetition of this argumen?; proves _that
LS,y Pn = Ual G =01, 7 Ga = Une This is precisely
the\Matement which was to be proved.

d NIt will now be proved that the term bex; o
S highest term in fg. This will be done by showing that, if @ '
-+ &,™ is a factor of a term in fy which is not the term bezy"* ™

ce x.n”"“", then onc of p; + ¢ — #1, *** Pu + tin - M ETHOt
zcro, and the fivst one which is not zero is indeed positive. Now,

as noted earlier, there is a product ;" « - z,™ from 7, and there

is a produet 2, -z, from g, such that my =& + &, - g

My = s, +t,. Therefore p; + ¢ — M = (P — ?:‘) =+ (‘Q’j =) if

S= 1, e T ps— o g — s 0, then either () pi ==
#0and ¢ —# % 0, or (i) pp—a1 =0 and ¢ —4 =0, o

pta .. g Pt g the
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(iii) p — 83 =0 and ¢ — & # 0. If (i) iz true, then p; — s
> 0, because bz, - -~ x,/" is the highest term mn f. blmﬂ‘]rh
g1 —t > 0. Therefore p1 — s + 91 — b > 0. Again, if (i) is
true, then py — &1 > 0 and g — & = 0, and henece p; — & + ¢
—t, > 0. Finally, if (i) is true, then py — s =0 and ¢ — iy
>0, and hence p; — s+ ¢ — & > 0. If pp—s+q — 14
=0, then p, — s =0, and ¢1 — & =9, and the argument is
repeated on pp — 8z -+ g2 — f2. Thus finally it is proved that
either py = 81, -+, Pn = S, Q1 =11, a = tn, that is, 7=
pr+ g1, 0, Wy = Pa T e, OF ODE of p +q1 —my, - \pu +
o — My 15 not zero, and the first one which is not zero mﬁobl’m .
This completes the proof of lomma L. EN
The second step in finding the polynomial in E&, s By, 0, d

which iz identically equal to the polynomial (54 [)}\ ill now be ex-
plained. Tirst, the highest term cetenlzs in fQu, m2, ay) is written
down. Next, the coefficient ¢, and theJeXponents 4, 3, 1 on
#y, Za, #3 respoctively, in this hlgh(‘btu te}m arc used Lo construch
the expression

),’ -
(56) B TRENT B,

The expression obtained by.{s]:ibét-ituti(m of (46) in (A0) ig a sym-
metric homogeneous polyftemial in zy, @2, a3 which is of the same
degree in x4, zg, T3 &g*f’ts:l, €z, ¥3). 'Therefove, il glay, @2, *3) 18
defined by \\ :

N

(a7) 9(31:5"2, Xa) = [(2, 29, x5) — BT RE TS,

then g(xl,:isg, ’c;,) is a symmetric homogencous pnlvnonnal in
Iy, To, Th “which is identically zero or of the same degree in @y, Z2,
T3 d&f(‘fgl, T2, &3).
N o, by (46), the highest lorm in Ey is x;, the highest torm in
~~Fg is 2139, und the highest term in Fy is #zeny.  Therefore the
highest term in the expression which is obtained by substitution
of (48) in (56) is, by lemma 1, e * 3(12e)®  (wrmpms)!, that is,
cx irg®rg.  But this is also the thhc%t term in f(xy, zg, Ta). There-
forc a term having #*z.’z3 as a factor does not appear in the
difforence flay, @, 23) — cE P PESTIELY, that is, by (67h
g(z1, s, Tz). Therefore, by the delinitions, f(xy, %2, ¥3) 18 higher
than ¢(z;, =, #3).
The third step in finding the polynomial in Ky, Es, s 6 &
which is identically equal to the polynomial (51), will now be ex-
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plained. By (57, f(zy, @5, 25) = cB1Fo?Es + g(xy, T2, 23). There-
fore, if a polynomial in B, Ty, E;, ¢ 4 is found, to which
glxy, 29, 73) 15 equal identieally in ¥y, %z, &3, then the required
polynomial in By, By, s, ¢, d for f(zy, 22, 23) will be known, By
use of {50) and (46} in (57) it is found that

(58) ¢{@1, T, 23) = (d — 5e)Tay w3252,

The first step in finding a polynomial in 7, Ky, s, ¢, d which 18
identically equal to g(x:, 2, 23) is exhibiting the highest term

N

. ¢\
(59) (d — beyaas ey O

in g(x1, #3, 23}. The sccond step in finding this polyno,rﬁi}il.‘is using
the cootficient 4 — B¢, and the exponents 3, 3, 2 9‘(:&1’, T, T3 Ye-
gpectivoly, in this highest term to construct the Expression

(60) (@ — 50T B g
R
If h(zy, 29, z3) is defined by A\

(61)  hizy, za, 23) = g1, 2o, 23) n—.’{(d — by B TR RS,

then A{xy, 25, 25) is a sym{néﬁr‘ic homogeneous polynomial in
*1, xs, #y which is identicully zero or of the same degree in x,
Ty, w3 48 glX1, e, Ty). Bx 46) and lemma 1, the highest term in
(60) is (d — Be)z® 2 (@w;)3'2(3;1x2:63)2, that is, (2 — 5e)z; s zs".
This iz also the hig\est- term (59) in glzy, o3, 23). Therefore, by
(B1), g(z1, 2», crivhigher than A{z;, T2, T2).
By using LQS) and (46) in (61}, it is found that
:"\.‘. . . _ []_
(62) ’ :§ - h(z1, Tz, ¥3)
'l‘]lgfgf‘oi'e, by (61) and {(57),
@ f(ay, 20, 15) = BBy + (@ — SOBEs™

The expression on the right-hand side of (63) is the poly.fnomml
in B, B, Ey, ¢, d which is identically equal to (51). It is to be
noted that the coefficients of this polynomial in Ey, By, £, ¢, d
are integers. .

In other particular illustrations the process would term_lmate at
(57) il in (58) it were Sound that g(zs, ¥2, ¥s) =0, but it would
extend beyond (61) if in (62) it were found that k(r1, 2o, Ta) were
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not identically zero. In all cases the process terminates after a
finite number of steps, because the ordered triples of non-negative
integers, which are exponents of x1, s, 3 in the highest terms of
T(x1, T2, £3), gl21, T2, 23}, h{21, Ta, 28}, « -, ave distinct triples, and
because the sum of the integers in cach triple is either 0 or 8, the
degree of these homogeneous polynomials in zy, xg, &3

PROBLEMS Q.

In each of the following problemss, if n and f are as stated, find the polyr{olqml
in Hy, - -, £y and the coefficients of § to which f iz equal 1clent.1w b mzg,
R

7
2 A&

. 3; b2xiwems + Doy )
. 3; BExiPrs -+ cZerpms. ..,\“
. 8; bEmtas + o, \N%

. 3; WEaaers + (‘2’171‘232

. 3; bEm° mz:l:'; + eXmiratas, ¢
. 3; bExielrs + cZaltat ~N
. 3; BSafas + cadeems + A2z, v

3; bBZxdmems + 02561‘552 + dZa iz, o\ -

. 3; bZaled + cSafes . Ny

. 3; belaxg 2+ eZaele s
11, 4; b2z me a‘/; + cZzPaoms.
12. 4; bZx "2 + ez Promames
13. 4; bZz lrelraws + Ca—‘ﬂ%} 3
14, 4: bz draryTy (,2.5'1 e
15. 4; by vy + c2u I22I3
16. 4 bzml‘lﬂjg —tx:b:cl Ig 223

o 00 =1 0 1B OO0 BD

[y

Ny Y

NS

No new j&kéas are involved in the proof that, if » is a positive
integer apd ¥ f i a symmetrie homogeneous polynomial in 2y, - -+,
¥n, thembhere is a polynomial # in By, - -+, B, and the coefficients
of j'J w1Lh integral coefficients, such that f equals I identically in
,;1:1, -, Zn. If the degree of fin 24, + -+, %, is zero, then the poly-
\normal F ig precizely the polynomial f. Therefore it is ussumed in
the following proof that the degree k of f in 2, « - -, %, is & positive
integer. If ki, - -, ka are Integers, each of which is positive or
zero, and if &y +-- -+ k. = k, then there is only a finitc number
of possible values for each of ky, ---, ks,. Therelore the list of
symbols which is obtained from (k;, - - -, k) by giving such values

to ki, -+, k, in all possible ways is of finite length.

If the highest term in f i

(64) by - - wa,
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then the coefficient b and the cxponents hy, - -+, A, in this highest,
term are used to construet the cxpression

(85) bElfll —MErghz—ha L En__lkn_l wh“Enh"‘

By (31), {85) is & symmetric homogeneous polynomial of degree
b+ F+hpinag, +--, 2, HJi s defined by

(86) Silwy, - m0) = flag, -, 20)

_ bElh—szz-’*z—ﬁa ... Eﬂ__lkn—rhnEnhn, )

then f; is a symmetric homogencous polynomial in z;, - - .,
which is either identically zero or of degree hy +-- -+ hd \By
(31) and lemma 1, the highest term in (65) is, in fact, the‘highest
term {61) in f. Therefore, by (66), a term which has &% . 2,
as a factor does not appear in f;. Therefore f 15 hi l{ér than f;.

If 1 is identically zero, then, by (66), the 1'cq1‘1'i§ed polynomial
in &, -+, K, and the cocfficients of fis (65} N1 f is not identi-
cally zero, then the argument which has be@ applied to f is re-
peated on fi. Thus, expressions for fy,')ulﬁch are ahalogous to
(64}, (65), (66) for f, are written. TheYew function f; is & sym-
motric homogencous polynomial i\21, «-+, Z,, which is either
identically zero or of degree Ayeh™ -+ ke in @y, <+ -, &n. In the
former case the required pelynomial has been found. In the
latter case fhe argument js repeated on fy.

It will now be proved :bhat in the sequence f, f1, fa, - -+, to which
this process leads, thére’is a function which is identically zero and
hence that this proeess terminates. First, each of the exponents
hiy - -+, hy ingli@ highest term (64) of f is a positive integer or zero,
and the sy ':Of these exponents is the degree & of f. Thus the
symbol (fyf~ -+, h,) s one of the symbols in the list which was
descri\b@ Garlier. 1f 7, is not identically zero, the same statements
are iUt of the exponents in the highest term of fi. They are fa,lso

,“\t-riﬁé for cach f; in the sequence to which this process lead‘s, if .f,;
\ié not identically zero. Also, if f; and f; ate two sz_lch‘func‘mons in
this sequence, and if © < j, then the symbol for f; is dxff'ercnt ’f romn
the symbol for f;. All these different symbols appear in a llS?; of
finite length. Therefore in the sequence [, f1, fz; "~ there 13 5
function which is identically zero. The process terminates “"lth
this function. Therefore there is a finite set of identitiels of which
(66) is the first, If each of these is substituted in turn in the pre-
ceding identity, the final identity obtained by substitution In (66)

yiclds the desired polynomial F.
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It is to be noted especially that the degree of (85)in Ky, -+, E,
is hy, and that hy is the cxponent on & in the highest term {(64)
of /. Again, the degrec in By, -, B, of ihe term which is sub-
tracted from f; to give f is the exponent on & in the highest term
of f;. Similar statements hold for the remaining identities. There-
fore the degree in By, -+, E, of the desired polynomial F is the
largest of these exponents on . Now k; is the largest of these
cxponents because each polynomial in the sequence f, fi, fo, --- ia
higher than the polynomials which follow it. Therefore hflis
the degree of F in Ey, -+, Ka Tor example, in (50),@\: 4,
Also g(z1, T2, 5) in (B8) is fi(®y, + -, Tw) in this case. Fhe Expo-
nent on #; i the highest term (59) of ¢ is 3, and the degree of
(60) in Ky, %, Ey is 3. The degrec of the right-haiid side of (63)
in El, Eg, Eg is 4. m'\‘\ .

It is also to be noted that (65) is a polynomidl in £y, -, Fa
and the coefficients of f, with integral go@cients. By {66} the
cocfficients of f are combined only by addition and gubtraction to
give the cocfficients of f1. Thereforgzthe term which is subtracted
from f; to give fs is a polynomial in BY, - -+, £, and the coefficients
of f, with integral cocfiicients, {An. analogous statement holds of
all the terms subfracted. Sihec F is the sum of these terms, it
follows that F is & polynofrlia:l in By, -+, E, and the coefficients
of f, with infegral cocffitients. This completes the proof of theo-
rem 2, the funda ?{M’meorem on symmetric polynomials.

TaEOREM 2. NS n is a positive indeger, of Ty, ~- -, &n @€ tnde-
pendent varighlts, if the elementary symmetric funciions By, - By
of these ugmiables are defined by (31), and if f is @ symmetric poby-
mmfia{z?h‘xl, oo, X, then there ¢s @ polynomial I in By, -0, By
and dhecoefficients of f, with intergral coefficients, such that, in accord-
q;n;qé with the definition which follows (49), f equals T identically 0

S&i, coo, To IS the degree of f in 2y ts Ry, Then the degree of F in
NS By, -, By is by

Other facts about symmétric polynomials are given in the refer-
enees cited at the end of the book.

3. Resultants. Discriminants. The definition and importance
of resultants will now be illustrated with f(z) and g{x) defined by

{67) f@) = ag?® + a2 + gz + a3, ap # 0,
(68) g(x) = bg$2 + blﬂi + bg, bg #= 0,
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If 7y, ra, ra are the roots of f(z) = 0, and if s,, s, are the roots of
g(z) = 0, then by theorem 15 of chapter 3
{69) f@) = aolz — r) e — 1)@ — 73),
70) g(@) = bolz — s1)(x — s2).

Now ry, 9, 73 are also the roots of the equation obtained by
dividing agz® 4+ a12® + asx + a3 = 0 by a5. The resulting equa-
tion i3 given the notation '

(71) 2B a2 Fae tals =0 O\
rp  § '\ ’
Thercfore « \

2q 2553 [1%:) "’:’g
(72) dy=—, @z=-, dyg=—

g o Iy '\'\

Tf the elementary symmetric functions of ry, 79,53 are designated
by Ay, As, Az, then, by definition, AN
(78} Ay =7m +ratry Az =nrr +‘TQ‘3’+ rors, Az = nirars.
Thercfore, by theorem 1 with n = 3, \J
(74) A = —dy, Ay <h, 4= —ds

The product g(:-"l)g(rg)g(rg}fi.s’oa’ symmetric funetion of the roots
riy ra, 3 of (T1). By (63}

18)  glr)gtrelrak 7O
(Bor® + Byer + ba)(bore® + bire + ba) (bors” + birs + ba).

If # = 3 in thebrtm 2, and if %, x2, Ty ave replaced rospectively
by 1, 72, 7 ;‘{shen E,, K, Fy arve replaced by Ay, As, A3 There-
fore, In tﬁe&rem 2, there is a polynomial Fin Ay, Ao, A3 :m.d the
coefﬁej‘éﬁts By, by, ba. such that F cquals g(r1)g{ra)g(rs) identically
in, r,i;.?g, s, The degree of £ in Ay, Ao, Ag i.s 2, because, hy (25),
“thirdegree of g(r)glraglrs) inr is 2. T herefore, by (74) arjd {72},

P is & polynomial of degrec 2 In a1/ao, 62/0o, as/ao.  1f this poly-
nomial is multiplied by 6o, the result is an expression in which
ay does not. appear in a denominator. The result 18 m(:,ieed 8 homao-
gencous polynomial of degree 2 in ay, a, g, @3, 1t 18 deagnate’d
by R(f, g) and is called the resultant of f and g. Thus R(f,' g is
a homogeneous polynomial of degree 2 I @, @1, 92, %2 which 1s
also a polynomial in by, by, Pz, such that

(76) R(j, g) = ac’glrog(ra)g(rs)-
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By (76) and (70),
77 R, 9 =
aeZbot(r1 — s1) (i — s2)(ra — s)(r2 — s2)(rg — 31)(r3 — 82)-
If the symbol ]l designates the product obtained when ¢ takes
the values 1, 2,15 and independently j takes the values 1, 2, then

(78) B, ) = agb 1| (i — ). Q

By (77), R(f, g) = 0 if and only if onec of the roots ry, 72, 75 {-\\fztm}s
one of the roots s;, 9. Therefore R(f,¢) = 0is a necesgary and
sufficient condition that f{z) = 0 and g(z) = 0 hav‘aﬁf"éommon
root. This fact is also exprossed by the statement that's has been
eliminated between f{z) = 0 and gz) = 0. Thigtdisenasion is an
illustration of a simple part of the theory of elithination.

Tt is to be noled especially that f and ’Q‘e used in different
ways in the preceding diseussion. T‘ll(;nefgﬁre, if this method were
applied to g and f, instead of to f andyg, the resultant Rig, f} of
g and f would be obtained. Thug,{ﬁ'(y, f) is & homogeneous poly-
nomial of degree 3 in by, by, vbg;'fivhiuh is also a polynomial in
ag, @1, Gg, a3, such that

(79) R = b’f(s)f(s)-
Also \\
(80) R{g,f) = ,?\30?‘162(81 — s — ra)(s1 — 73)

N (82 — m1)(sz — 7a){s3 — 73);
@UR%p:wﬁﬂw—m.
O i
NO\\-",:by {80),
\esz;i? R, ) = (—=1Pas(r — s1)(r2 — 1)
(ry — s1)(ry — $2)(r2 — s2}{rs — S2)-
Therefore, by (77), for the particular polynomials (67) and (68)
(83) Rig,f) = (—1)°R({, 9).

No new ideas are involved in a discussion of the resultant of
the polynomials f(z) and g(z) defined by

(84) F@) = a@™ + ™ ok G g® + @ a0 # 0,
(85) gla) = bg™ + b -+ by + b, b # O
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By the fundamental theorem of algebra, there are m roots T, e,
rm of f{x) = 0 and therc are n roots s;, -, s, of g{x) = 0. The
product g(ry) - - g{ry) is a symmetric polynomial in », « -, »,.
By theorem 2 there is a polynomial # in the elementary symmetric
funetions 4y, «++, Ay of ry, «+, r, and the coefficients by, -« -, by,
such that # equals glry) - -+ g{r.,) identically in ry, «- -, r,. Now
Fis of degree nin Ay, - - -, A, beeause g{ry) - - - glr.) is of depree
nin ry. Also 4; = (—=1)ag/ag for i =1, ---, m. TIf these sub-,
stitutions are made for Ay, - -+, A, in F, and il the resnlt is multic
plied by a,", o homogeneous polynomial of degree n in aq, - 5% Ba
is obtained. It is designated by R{J, g) and is called the pespitani
of f and g. Thus R(f, g) is & homogencous po]ynomig,l’pf‘tlegree
nin ag, + -, @, which is also a polynomial in by, « - - #8h siich that
£ &
(36) BUf, g) = adg(rn) -+ glrm)s O
By theorem 15 of chapter 3, f(x) = aplz :.—{n’) roo (% — 7} and
gz} = bylz — 1) » -+ (& — sa).. 1 the symibol I[ designates the
\¥; i

product obtained when ¢ takes the Yalues 1, «++, m and j inde-
pendently takes the values 1, - ',},’fﬂf;. then

(87) R(f, 6~ I| ¢ = .
~ T b
Therefore R{f, ) = Q»%I:and only if the equations f(x) = 0 and
glx) = O have a ¢ T rool. _
Similarly, the’resultant E{g,f) of ¢ a-I.ld f is la. hom(;genec)}lsl
polynomial of @egree m in by, - -+, ba, which Is also a po ynomia
in g, -y, such that R(gf) = bo™f(s1) -+ flan).  Also,

Rig,f )\%fgdmao“ H (s; — ro). Therefore
O\ %) :
(88 Rg,f) = (=)""B({, 9)-

'\M\This completes the proof of theorem 3.

Turorwy 3. If f(x) and g(z) are the polynomials (84) and (85},
and if the roots of f{z) = 0 are designated by 71, -5 T and th.e.
roats of gla) = 0 by sy, S Shen 90) - 4lrn) i & symnClc
polynomial in r1, +*, Tme There i3 0 homogeneous .polynumza bo
degree m in Gy, - -, G, Which s also @ polynomial in bgr:
and which is designated by R(J, g), such that R{f, ) = ao 55?}}) s :
g(r,). R(f, ) 4s called the resultant of f end g. R{f,9) =07
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necessary and sufficient condrtion that f(z) = 0 and gz} = O have a
common root.
PROBLEMS

If f and g are as stated in each of the following problems, ind R(f, ).

agr + a1; bor + by

.z + a; bor? 4 e 4 b

age? + oz + ay; bor? + bix + b

. e’ 4 e 4 agr + as; boe 4 b1, ~
agr® + aue? 4 age + as; ber® 4+ e + b

age® 4 ap? + aze + ag; b 4 b 4 ber + ba RGN
. ape? 4 agr® + agr® + aaw + ey bor £ b N\ ©

N a[::c‘i + (I:]_ﬁ?s + az.?}z + L1579 + g4y bu$2 + bl-’L‘ + bz, A
agrt 4 a® + agz? + agr + ay; bpe® 4 bir® 4 ber + by, <™
.t 4 ar® -+ a? 4+ e 4 ag byt + BiF® + bae’ +\ B2 + ba.

HesknNEE

=
S w o

The digseriminant of the general cubic equat-foﬁ was defined in
theorom 4 of chapter 2. AN

The digeriminant of the general quarti€ equation was defined in
theorem 8 of that chapter. The dischiminant of the general poly-
nomial equation f{z) = 0 of degree 2 will now be disenssed, U
f(z) is given the notation (84), @nd 7y, «--, 7 are the rools of
f(x) = 0, then the produet (z'l‘~;’—="r2)2 coe (g = )il — )
(ro — rm)® * 7+ (Pt — Tl 18 & symmetric polynomial in 7y, -0y
Tm. 1 the symbol Ei{ies'lgna-tes the product obtained when ¢

M

takes the values IX\ <., m — 1, and independently j takes the
values 2, - -, gh which are such that ¢ < j, then the preceding
symmetrie ;{{)‘lynomial in 7y, -+, s van be writlen I[ {r; — 2.
O i<j
Theref%(’:;,\.by theorem 2, there is a polynomial F in 4y, --- A
such €hat ¥ equals Jl (r; — r5)? identically in 7y, <+, T NOW

L]

”.\11}'(?%- — 7% is of degree 2(m — 1) inr. Alwo 4; = { —1)%a;/to.

N\

B

Therefore a®™ 2F is a homogeneous polynomial of degree 2m — 2
n g, * -, m. ‘This polynomial is ealled the discriminant of f and
is designated by 5. Thercfore é is a homogeneous polynomial of
degree 2m — 2 in @y, '+ -, &y such that

(89) b= a2 || i — 72

7<)
Now, by (89}, 6 = 0 is a necessary and sufficient condition that
flz) = 0 shall have a muliiple root.
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By theorems 17 and 18 of chapter 3, f{z} = 0 has a multiple
root if and only if f(x) = 0 and f'(z) = 0 have 3 common root,
and hence, by theorem 3, if and only if R{f, /) = 0. It will now
he proved that

(90) R, £7) = (=1"m=qgp.

By theorem 15 of chapter 3, flz) = aplz —ry) - - (x — vw).
Therefore, by the rule for differentiating a produet,

N
') = aglry — ra)(ra —v3) ~ -+ (11 — ), A
{ N
firy) = aolrg —m)lre — 7)) - (2 — 1)y (G
' ' R
R

F'rw) = eolrm — r)(tm —12) -~ (?’rp = ).
'T‘herefo;c, by (86), with g replaced by f ’\th; by m — 1,
T e e
(=12 SR -+ (0 = )
(1S = e = )’

N\
o ({fb('rm—l - Tm)ﬂ-
Alzo (_1J(fn~1)fgrrax\2)4----+-2+l = (__l)rﬂ(m—l)a'ii_ Therefore

,; — o 2wl _ymm—){2 v — )%
O RUT) = e D Il =7
\M )
1If (SQNS'used in (91), the result is (90).
}liihs complates the proof of theorem 4.
e il

i

\\ “Tumonem 4. If f(z) s the polynomial (84) and 1f the roots of

2 -
f(z) = 0 are designated by 11, =" Tms then E {(r; — 7;)° 15 ¢ sym-
melric polynomial n r1, 7 e There 'is. a }‘:omogfmco;; golg:;—
nomial of degree 8m — 2 in o, s Om which s defng?a : ¥ 8
such that 8 = ag?™ 2 ][ (ry — )% 8 i called the diseriminant of

t<j . iy _
f(x). §=0 is o necessary and sufficient condition that flzy =0

!
shall have a multiple root. Equation (90) relates & and R{S, 1)
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If m = 3 and § is found by the method explained in the proof
of theorem 2, the expression which was given in theorem 4 of
chapter 2 is obtained. Another method of obtaining the homo-
geneous polynomial In ag, <+ +; On which is R(f, ¢) will be explained
later. 'This will give, in particular, a new method of obtaining
R(f, "), and hence, by (90), a new method of obtaining 8.

Tt will now be proved that, if f(z) and g(x) are delined by (67}
and (68), then f(z) = 0 and g(z) = O have a comion root if and
only if \

g 41 G2 O 0 .\\\

¢ a, a1 Gz O3 P\
(92) by b by 0 0 | =0 N\

0 bp b bha 0 ) ~“ )

0 0 by B by ."‘g\\

First it will be proved that, if f(z) = 0 and g(x}'= 0 have a com-
mon root, then there is a polynomial fy (z) afydegree 1 and a poly-
nomial gy {(x) of degree 2 such that O

©3) D) = aN ).

If f(x) = 0 and g{z) = 0 havesitommon root, then the notation
for the roots can be chosen soithat 7y = si. Then (93) holds with
f1(@) defined to be bo(z <453 and g1(z) defined to be aolx — ro}(@
—ry). Next it will hapiroved that, if there are polynomials f1(x)
and gy(z) of degrceﬁ\\i. and 2 rtespectively such that (93) holds,
then f(z) = 0 and)g(x) = 0 have a common root. By (93) and
(69), the progust/ (z — )@ — rg)(w —r3) s & factor of the poly-
nomial of dégtee 4 in & which is obtained if the operations indi-
ealed i ’_&}@)g(ac) are performed. By the fundamental theorsm
of a-]gg’b\a and thoorem 15 of chapter 3, g,(x) s a product of two
ﬁpq.af'fa.ctors. Therefore ane of the linear factors £ — 1, £ — T2,
<‘a§ o 1, is & factor of g(z). Therefore f(z) = 0 and g(x) = 0 have
i common root,

If the notations
(94) fi(@) = e+ o co #= 0,
(93) g(z) = dgr® +dx + do, do # 0,

are used, then (93) is equivalent, by (67) and (68), to (co® +
e1) (a2 + a2 4 ast + ag) = (dox? + diz + ds) (box? + b + ba)
and henee to (ggco — bodo)=z* + (aico + ager — b1do — bod)x® +
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(0230 —i—- aie — bzdu - bldl —_ bgd2)$2 + (agcu —I" (sl — bgdl -
bida)x + (asc, — bade) = 0. Hence (93) is equivalent to

@olo — body =0,

meg + aper — bidp — buth =0,

(96) aoty + 16y — Doty — bydy — bydy = 0,
aaCo + oty — body — Bydy = 0,

ey — body = (.

P \:\’
It has been proved, therefore, that f() = 0 and g(z) = @have a
common root if and only if there are numbers ep, €1, dondy; dy such
thut €y # 0, do # 0, and (96) hold. Now the ﬁ\jej'ﬁnedr homao-

gencous equations ."'.,\\‘
GoZy + oz D = b,
aey + agza + bz o+ bnz?.’\: ;.\ =0,

97 aszr -+ a1z + beza + 51,@4_]- bozs = 0,

aszy + dg%2 * O bazy + bizs = 0,
ages B + bozs = 0,
have a solution whichds'not the zero solution if and only if

‘a0 b 00

b @ b b 0

(98) NOTa e b B b

X’\’ ud [£2:1 dz 0 bg bl

\O" 0 a 0 0 b

Ais();}his determinant is zero if and only if the determinant

i 6btained from it by interchanging rows and columns i3 zero.
YThis proves the statement involving (92). _

It 11: proved in the relerences cited at the end of this book' thalmlt-,
if f(z) and g(z) are defined by (67) and (68), then R(f, g) Is the
detorminant on the left-hand side of (92). tenn

If f(z) and g(z) arc defined by (84} and (85), then the de 0111‘1111-
nant B which is analogous to the determinant on the left-hand sic 'e
of (92) is defined in the following manner- There are m+n rj_“T
and m -+ n columns in B. The first 10 of B consists of the ?:i -
eleroents ag, a;, ** - % followed by n — 1 zeros; the secon

=0

nt which

N



266 §YMMETRIC FUNCTIONS

of B consists of the elements 0, g0, @1, - -+, &m followed by n — 2
geros; + - -} finally the nth row of B consists of n — 1 zeros followed
by g, 81, " *; Up. Lhe YOW of B which iz numbered # 4 1 con-
sists of by, by, *++, by followed by m — 1 zeros; the row numbercd
n 4 2 consists of 0, b, by, -, bn followed by m — 2 zeros; ---;
finally the row numbered n +m consists of m — 1 zeros followed
by bo, b1, *+°, ba. No new ideas are involved in the proof that
f(z) = 0 and g(z) = 0 have a common root if and only if there is
a polynomial f,(z), of degrce = — 1, and a polynomial ¢(z), of
degree m — 1, such that (93) holds. Therefore f (x} = 0 and gy
— 0 have a common root if and only il the set of m +n Hiﬁzar
homogeneous equations in m + % variables, whose coclfigient do-
terminant is B, has a solution which is not the zero soldion, and
fence if and only if B = 0. In more advanced tIé?a}&nents it is
proved that R(f, ) = B.

X.‘,\\.)

PROBLEMS ./

If f and g are as stated in the problerns on page Q62, write R(f, ¢} as a determi-
nant B. Ixpand B and identify the resultafith that obtained by the former
method. N

N
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ANSWERS

Page B
8. —1, (1 + V32 (- Va2

Page 8 N\
1. \/é(cos 135°_+‘i gin 135°), L{cos 240° 47 =in 240%), 1@m§‘§:.f'0° +
i sin 270%). 8. \/2(005 on5° + 1 sin 285°) 8. 1(cos 120° —I—j':éjnli(j").
N\

\
N7

N

3. =, #, 74 are cube roots of unity. 2%
N

Page 14

S 3
AN\

Page 18 )

1.7 =1, § = 40°, 160°, 280°; ¥ — 08 = 54°, 126°, 108% 270°, 342°.
8. r =1, ¢ = 367, 108°, 180°, 252°%0824% v = 1, 8 = 24°, 96°, 1687 240°,
4125, B, r = /2, 6 = 33° 45, 198745, 218”45, 303 455 r = 1, 8 = 607,
132°, 204°, 276°, 348° 2\

/N

) Page 20

X\
r=V26= 45“,\165", o85°; r = V2,0 = —45°, 75°, 1957 8.7 =2,
07, 1207, 240%4or8 and for its copjugate. B.r =1,8= 20°, 140°, 260°;
1,

(TS

?
r ¢ = —20°.160°, 220°

§\,\ Page 26

1.1 2§11 b 2, —1 42— /2 BB (2u2/3)
2 3P @o®). 5 (/8 + V2 @Va/3), (1/3) + Vau — @V4A/3),
<I~1;/3’) 1 V3 — @V 4w/3). 7. -2 +V3+ Vi 2+ Viet
$1ja, -2+ Vald+ V136 o, —4/3, -1+ (20/3) —
1 @3 — e 11— Va1V, 1-Viedt (2/3V2), 1~ -
Vit t @aVe., B2t Viervmzd 5 - V22 +
~/29)/2, 2 +.w2\7(5 + Va2 +

oV (5 + V20)/2 4 & v (5 —

- Y g =

oV (5 — V20)/2. 15. a4V o Va4V —2-V3 -2+
\3/_2+\/§+m\3/_2-\/§.

m\3/r2+\/§+mﬂ\s/~2-\/§, —24
269




970 ANSWERS

Page 28

1, —.1206, —3.5321, —2.34730. 3. 1.3302, —3.1291, —1. 20164. B, 2.860%,
—1.1149, 1.2541. 7. 0.3221, —2.4912, —0. 83042. 9. 2.83757, 0.8038
296959, 11. 2.673, —0.4697, 0.70664. 13, —0.7330, —3.5257, —1.74135.
16, 0.8130, —2.1764, —0.13657.

Page 32

L A_0 8 A0 Ba=0 Ta<0 8a<0 1L4<0

18. & < 0. 16. A =0 N\
Page 36
_ .\ \

1 —1+VZ 1+ V2 3.1, —2, (1/2) + (V3/2)i. 5,\@, o~
14 Vae To1xiVs -1 -l 0 (-1 £ V'5)/2, ,(1‘#?\/7)/2
11, (-3 +V3)/2, G £ VID/2 13. 3+ \/3)/2&@3 £ V1D/2.
16. 3 £2v2, —3+V7T 17, (=1 4+ V2 S X 1V A,
(-1 - voi\/—‘w—u\/zm 19. (a+av§1~1¢a+2\/5

Vst 4 v ra0d (6 - 6V 113 =2V 3\7&54 — V13224

o

Paged’.?.
1. 5> 0. 3 5<0. B >0 7*«5"—0 9. 5 <0 11,3 =0

..\ Page 48

1.1,3 -2 83 1 5.1 —4 7.2 -3 91,238 —4
1L, None. 18. +1,4 \\a 49, —5,7. 17. 2, 6. 19. Nooe.

, x\', Tage 52
=—\” G _31. B.r—304 T.r=7lL 9.r=29 1.7 =0
13 r o= B\.Jrﬁ r = 16,618, 17. r = —8§,840. '
.\\
QN Page 65

\\:1. 9, —3. 8. 43, -2, —5. b Nome. 7.4, —2. 9 5 —2. 11 None
13. =2, 43, 1. 15. 6.
Page 61
1.0, —4 3 1+V5 ~8 b1 + VAL -3 T 14+ V2 -2 0.1+
V7 —2. 11. 8, —1 — V7. 18.5/2, =2, 16. 4,0.

Page 66

1. —3, 4, 1/2, 2/3. 8.3/4 -2/5. 5. 4/3, —1/2. T.2/9 ~1, 3, 4.
o, None. 11. -6, —1,2. 13. 2,1/3, —1/2. 15 None.
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Pages 70, T1

1. 1, double. 3. 2, triple. 5. None. 7. 2, double. 4. 3, triple. 11, None
13, —1, 3, cach double. 15, None,

Page 76

These answors list the roots of f(z) = 0. 1. -2, —2,3,3. 3. -3, -3, -7,
4, 5.2, -3, =21. 7. 1,1,1,22 9 22233 1 1,1,2,2, -3. 13 1,
, —2, —2, =3, —8. 15.1,1,1,1, -3, —3.
Page B1 & \

1.3, (— uﬂ:xﬁ)/z 3. —1,23 (—8£iV7/2 & L;&t\/Q cach
double. T. (1 :La\/l'i}/2 each triple. 9. 1, triple; I/ 71/2, each
double. 11, —2, —1, each double; 2. 13, ('%iﬂ/ﬁ/ﬁ e\ch double.

Page 84 Z, \';

7
\

These answers list f1, fa, f5 for problems, 1 3\ 5, 9, 11 and fi, fo, f, fa for
problems 7, 13, 15, L. 3(x?f — 22 — a) 12{33: 4 1), 38-12. 8 3(z* + 2,r
+2),6{—z +7), —06-65. b 3(? —I—'S’r o 4), B8z 4+ 9}, 3-2151. T, 41
+ 3z — 2z 4+ 1), 45z — B + 2},' ‘4( ¢+ 3), —4.58. 9. 3( — e},
6(dz — 1), 90. 1L 3(z - 1), 82z - 5), —63. 13 4(P + 62t - D),
(20422 + & — 1), 12019 — 7),'8212. 16, 202+° + 3% + 4z + 1), —2(>r°
+2: 47, —-8(2r — 13),2\'325

«C :
N\ Page 86

These answersy hsvf conacentive integers between which the real roots lie.

1.—3~—20]56312 5.-—11-10—2 —1;0,1. 7. 0,1; -5 —4.

9.0, ;5,:6)“'10 11, —3, —2 13 —7; —1, 0; 0, 0.37; 037, 1.
15. No{é’.\;"
..{\ Page 93

N
conseculive integers bulwesn which the real roots lie.

"Pheso answers lish
—1,0.

\”\rlz 301 501;23 71,201 -3 -2 9. 2 3;

Pages 112, 113

1. z=2 y=-3 2z=—1 3. y=3x+05 z=2z—1. B u2=
U/( -3 =wf(—1k T.e=38 -1 s =9t 9, Inconsistent, 11w =0,

=2+ 1. 13, 7 =2s+1, t=23—2

Page 120

1.6,1, —4 3531
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Page 122

1.z=2 4y=-8 z=-1. & Inconsistent. B. ¢ =0, s =10, § =0.
7. Inconsiglent. 9, uw = 2,0 = —1,w =3. 11. Incongistent.

Pages 126, 127

lL.r=38=rq =2 y=—1, 2=11 3. r =2, r, =3, inconsistent.
. r — 2 = r,, infinitely many selutiens. T.r =1, s = 2, inconsistent.
9, r = 2 = r,, infinitely many solutions. 11, r =3 =ra % = 0,5 =11=8\

Page 132 R \“..\
N

l.r=d=1q =2, y=—1,z=1 w=25 3 r=3 rag—\"cf,mcrm-
sistent, B r =4 =rz=0=y=z=mw T7r=231 3% iconsisient.
9. r=4=r,o=0s=-2t=1Lw~=—L M'\\.

N\
W

Pages 139, 140 S\
(M

8. + amogdmciann, — babebumbibs; M}M?Ifmaswls, — harhaaDyabasbes;
— ayiadnantes,  + Dubabububes. B 128 16' T. + ap1d120530540 15086047,
— borhrobssbatbisbesbar; — G7la1zfmaa4a15ﬂﬁs&z7, 4 bribashasbsabrsbeshar;

— anG4e1tTsEsaetaT, 1 bsﬂ?azbubnh mbsab.??

S
. g

“Page 147

.\

8. + asqamdi3tpulos, "l—:h@zbnbmb%; + asagazstiadss, + babmbathbss;
— agitaastenins, — DaluaDisbulns. B. — Q10120450 74365026067
— Dobasbrshaberbrebapy V01072050 14%5502004T, + barbeabesbrabysbasbar;

+ auamazaamaasae»&aﬁz, + babsrbssb1abrsheshar.

b } J
;"\:\ Pages 162, 163
\ N —r5, 87, —120. 3. —112, 63, -75, —53. b. 942. T. 651
% \ .\¢ ‘ Pages 161, 162

1. —3565. 3. —054, —2-954, —3-054, —0OB4, 954, B. 254, 208.

Page 164
1. —29-35. 8. —486-42, b —234-185. 7. 161-278.

Pages 186, 187

1, z=1, y=0, 2= —2 w= —1 35 Inconsistent. 5 © = 0, s=14
i=—-lLu=2 Tz=0y=lz=0u= -3 v=2 9. Inconsistent.

!
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Pages 193, 194

Lr=83=rs 3.7r=2 r,=8 6r=3=r Tr=4 r=5.

Pages 198, 199
.r=4r=5 bLr=4r=5 T.r=8=nr,.

Page 201
N\

Page 193, problem 1. y = (13 — 31)/9, z = (=385 + 62)/9, u = —4/8
Page 193, problem 5, z = —(20 4 92y) /117, 2 = T(1 + ) /18, 1 = {7+
3} /26, Page 194, problem 9. s = —{13 + 13y -+ 51v)/12, t = 3\—““3; +
9oy, w = (5 —y 4 270)/3. Page 199, problem 7. y = (-—3{,, 427 —
50u}/17, 2 = (43 — 61z + 44u)/17, v = (21 — 46z + 200)/1%,

S

Page 204 A4

Page 103, problem 1. fs= — i +Jz + 3f5 PageMbE, problem 5. fz =
— 2f3 4+ fo fa= —fi + 3 + 5. Page 194, p:rq%@?n 9 f=f—fc+1s
Sa=21 4+ +fofs =/ + s — fo. Page 198 preblem 7. fr =fi —fo —Jfo
B=h+h—-2al=h-f+3%e N8 )

Pag8 207

Page 193, problem 1. 0, 13/ -35/9, —4/3; 1, 10/9, —20/9, —4/3;
—1,16/9, —41/9, —4/3. Pago-93, problem 5. —29/117, 0, 7/18, —17/20;
—112/117, 1, 28/9, —7/13{R13, —1,0, —10/13. Page 194, probiem 9. 0,
— 13712, 3/4, 0, 5/3; =301, 0, 2; 0, 16/3, 3, 1, 32/3. Page 199, problom
7. 0, —31/17, 43/}%'\0,«’21/17; 1, 11717, —18/17, 0, —25/17; 1, —48/17,
26/17, 1, 4/17. %

s\ Pages 210, 211
A</

1.1'?3'(:'.1’5& 8.r=3 r=4%4 Br=d=rn Tr=4 r.=5

9.r=24dx3 1l.r=83=rs
\\;
“{\ Pages 212, 213
\.»\;:}’i.:,-:a. 8.r=3 br=4 Tr=4 %.r=38
. Page 218

1. (3: 2,8 '_2)) r=2 3. (-1: i1, &, == 2. 6. (2" _1’ 4, -3 s

r=35 73131 —2)r=23 9 (,1, —1,2, —=2),r =3

Page 220

Lrefu=3n—f—f Sr=%Us=iidim =30+
Tr=4=—{1—

B.r—3;4f= —f — {24+ 2m f =82
Gttt fs= 2T
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Pages 222, 223
.r=2 8 r=2 6r=3 T.r=4 9. r = 3.

Pape 226

8.r=2 Br=4 T.r=3

Pages 234, 235
Lr=2r=3 3r=2,7,=3 6.r=2=ra

&
o
0‘3
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(Numbers refer to pages.)

Addition, of determinants, 158
of number pairs, 236
of vectors, 215
Addition to eolumn, of determinant,
159
of matrix, 191
Algebraie processes, 24
Algebraie solution, of cubic equation,
24
of cuartic equation, 32
a.m., 124, 187
Amplitude, 7
Approximation eorrect in % decimal
places, 98
Arrangement, 118, 129, 136

~

Assoviative law, of addition, 236 (N

of multiplication, 237 N
Augmented matrix, 124, 187 ™

*

Basis, 216 N

7

Binomisl equation, K\

Cardan's formulas,.24
Closed interyal 88
¢.m., 124,187
Coefficiént,leading, 54
Co{aﬁ}%\‘:ﬁt matrix, 124, 187
Coeflicients and rools, 243
‘Gommon root, 260, 261
Commutative law, of addition, 236
of multiplication, 237
Complementary minors, 165, 166
Complex pumbers, 239
conjugate, 18
division, 9
multiplication, 7, 239
trigonometiic forta, i
Conditions, necessary, 113, 114, 117,
128, 131, 182
necessary and sufficiont, 262

Conjugate eomplex numbers, 18
a8 roots, 79 N\
Continuous lunction, 89
Contracled division, 104 \:\
Coprime integers, 61 N
Correction methed, 1014 ™
Correctness in & decitnalyplaces, of a
root, 98 7 '\"
Correspondencé;’g\ne-to—onc, 134, 143,
148, 1673, 238
Cramer'g ule, 185
Cubiegglition, algebraic solution, 24
pénaral, 21
{nutnber of real roots, 30
VAN real, 21
reduced, 22
resolvent, 35
trigonometric solution, 35
with real roots, 25

Degres, 44, 243
Die Moivre's theorem, 11
Dependence, linesr, 202, 216, 218
Depressed equation, 53
Derivative, first, 75
Descartes’ rule of signs, 94
Dotached coefficients, 72
Delerminant, 106
elemenis, 116
of ovder 2, 119
of order 3, 116, 119
of order 4, 129, 130, 131
of order 5, 133
of order n, 134
symbol, 116, 134
Determinants, addition, 158
multiplication, 162
Digeriminant, of general culis equa-
tion, 30
of general polynomial equation, 262
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Digeriminant, of quadratic equation,
23, 29
of quarlie cquation, 38
 of redaced eubie equation, 29
Distinct products, 242, 243
Distributive law, 237
Division sigorithm, 50
Division, by detached eoefficlents, 72
contracted, 104
Divisor, 43, 50
greatest common, 71
Double infinity of solutions, 107

Flementary symmedric functions, 248
Iflements of determinant, 116
Elimination, 260
¢, 13, 15
FEquation, 1
binomial, 4
cubig, 22, 24, 25, 30, 35
depressed, 53
inn number pairs, 237
polynomial, 44
quartic, 32, 38
Equations, cquivalent, 2, 21, 33, 11Y7
195, 196 N
homogeneous, 114, 113, 213
identically equal under tl‘ap forma-
tion, 56
inconsiztent, 108, 109, 121, 126, 196
satisfied identioaly, 201, 207
sirnltancous Tiedr, 106
Equivalent e('lha“tions, 2, 21, 33, 107,
1955306~
Equivalén ‘systems, 195, 108
Expamgion of determinant, 134, 147,
(149, 151, 152

h
3

Factor, 43, 50

in column of determinant, 154

in row of determinant, 155
IFastor theorem, a0
Factored form of polynomial, 54, 69
Firat fundamental property of deter-

yinants, 134, 137, 139

Functimm, 1

contingous, 8%

factorization, 3, b4, 69

*

INDEX

Function, homogeneous, 110, 248
linear, 107, 108, 110, 206
non-homogeneous, 107, 108
symmetrie, 247, 248
Z-, 248

Functional values, 3

Funetions, Sturm, 84, 87
identically equsal, 2, 3, 48, BG, 249,

250
Fundamental properties of deter
nants, 134, 137, 139, 142, 145

Fundamental set, 215, 225 { M\

Fundamental theorem of algebra 240

Fundamental theorem om Syminetrie

polynomials, 249, 236; 258

Gencral polynomra}\ln x, 44
General soluthen,M07, 108, 110, 209
General tepm, 139, 143
Geometmédlinterprétation, 226
Grcajte’s’t, ommon divisor, 71

’Hidgh“cr polynomial, 251, 252

\Ifigher term, 252

Highest term, 251, 252, 253

Ilomogeneous cquations, 110, 113,
211

Homogeneous polynomial, 110, 248

Ilorner’s method, 95

Tdentity, 2, 3, 48
Inconsistent equations, 108, 109, 121,
126, 196
Inconsistent system, 108, 109, 121,
126, 196
Independence, linear, 216, 220, 222
Induction, mathematieal, 11, 47, 50,
244
infinity of solutions, double, 107
single, 108, 109, 110
Integer, 44
Inicgral roots, 44
Interchange, of two columps, 139
of two rows, 146
Interval, closed, 88
Inversion, 118, 136
Isolation of roots, 82
lsomorphism, 238
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INDEX

Laplace's development, 165, 171, 173
i75
Leading coctlicient, 54
Linpar ecombination,
202
of vectors, 215
Linear dependcnce, 202, 216, 218
Linear equation in number pairs, 237
Linear funetion, 206
Linear independence, 216, 220, 222
Linear space, 215
Lines, 220, 230, 234
Literal product, 118, 129, 139, 143
Lower bound, 61

of functions,

Mathemsiical induction, 11, 47, 50,
244
Matrix, 106, 113, 123, 125, 187
sugmented, 124
coellicient, 124°
rank, 123, 125
Minor, 125, 130, 148, 188
Minors, compiementary, 1656, 166
Modulus, 7

*

Multiple root, 69 ON
Multiplicily of root, 67 AN

Mulliplieation, of complex numbers,
7, 239 RS
of determinants, 162 \‘ )

Necssary condltmns, 113, 114, 117,
128, 131, }82

Non- homoge{cous linear fumctiomn,
107,

Normaliné to plane, 231

Num,bf}\LpalrS, 236, 237, 238

Numbers complex, 239

{ Yeal, 237

nmerical solution of linear equa-

tions, 207
n-yector, 215

w, 10

One-te-one correspondence, 134, 143,
167, 173, 238

Order of determinant, 116, 119, 129,
134

Ordered pairs, 236

277

Particular zolution, 108

Planes, 232, 234

Polynomisal, 248
homogeneous, 248

Polynomisl in 2 of degree n, 44
factored form, 54, 69

Polynomials identical term-hy-term,

55

Product, literal, 118, 129, 139, 143
signed, 130, 138 ~

Products, distinet, 242, 243

Proportional sets of numhers, ‘22\8‘, 232

Quartic equation, 32 . .s.\
algebraie solution, 32
discriminant, 38 ¢
real, 32 o

Quotient by synihetic substitution, 52

rs, 126 \'
Radlca.l\7 16, 17
Ra.rrk of matrix, 123, 188
Ratlona.l nymber, 61
Ratloml roots, 62
Real cubic equation, 21
Real polynomnial, 44
Real quartic equation, 32
Real roots, isolation, 82
lewer bound, 61
upper bound, 60
Reduced cubic equation, 22
diseriminant, 20
Relations botween roots and cocfli-
clents, 243
Relatively prime integers, 61
Bemainder theorem, 50
Resolvent cubie equation of quartic
equation, 35
Besultant, 259, 261
Root, 2
common, 260, 261
integral, 44
multiple, 69
rational, G2
simple, 69
Roots, isolation of real, 82
number, 54
relatjons with coefficients, 243
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Roots of unity, cube, 10
© fifth, 12
nth, 14
Row-by-column rule, 163, 165, 175

Sealar multiple of vector, 215
Second fundamental property of de-
terminants, 134, 142, 145
Signed product, 130, 183
Signs, variations, 85, 87
Simple root, 6%
Simultanecus linear couations, 106
Single infinity of solutions, 108, 109,
110
Solution, 2, 106, 107, 108, 114
particular, 108
trivial, 211
unique, 109, 110, 126
zere, 110, 211
Hpace, linear, 215
vector, 215
Square Toot, 7
Siurm functions, 84, 87

8iurm’s theorem, 82, 86, 03 & '.’

Hum, of determinants, 168 ?5:
of produets of roots, 242
Symmelrie funclion, 247, 24&
elementary, 248 \J

Synthetic bubstdtutlon\a}

.\}

INDEX

Bystem of equa,t,ioné,?
incongigtent, 108, 109
Systems of equations, cquivalent, 193,
196

Term, gencral, 139, 143
{ypical, 140
Theorem, fundamental,
240 . .
fundamental, on symmetric 1)0‘13,S

of algebra,

nomials, 249, 250, 208 A «
Sturm’s, 93 “'\f\\“.
Trivial solution, 110 U

Typical ferm, 140 (xf"
D

Unique sr_:lutiou‘q.,wtﬂ{)\,' 110, 126

Upper boundy 6D

V., 85,87

Vazittions in signs, 85

Vbi}l}ﬁl’, 215

G gealar multiple, 215

“Vector space, 215

Vectlors, linear combination, 215

Zero palr, 236
Zero solution, 110, 211
Zero vector, 215
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